Author(s): Rasmi Zakiah Oktarlina, Syaiful Bahri, Andi Nafisah Tendri Adjeng

Email(s): rasmi.zakiah@fkunila.ac.id

DOI: 10.52711/0974-360X.2022.00331   

Address: Rasmi Zakiah Oktarlina1*, Syaiful Bahri2, Andi Nafisah Tendri Adjeng1
1Department of Pharmacy, Faculty of Medicine, Universitas Lampung, Bandar Lampung, 35145, Indonesia.
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, 35145, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 5,     Year - 2022


ABSTRACT:
Carp (Cyprinus carpio) has the potential which is not only consumed from flesh as an edible portion but it is also able to be utilized from waste. One of waste is the scales of the carp known potentially contain of collagens. Micro-collagen has been extensively applied in various fields which were health and cosmetics. The problem to find the supply of collagens from non-halal animal sources and prone to infectious diseases is the fundamental consideration of this research to be undertaken in order to discover alternative sources of them. It was aimed at production and characterization of micro-collagen by utilizing carp scales waste. The stages of the proximate test, deproteinization, extraction, analysis, and characterization were series of processes to acquire collagen. The extraction results found that the yield of collagen extracted from carp scales waste was 8.62% with a yellowish-white color. Physical characterization of collagen obtained was pH of 6.59. The maximum of UV absorption at a wave length of 268nm was originated from the structure of collagen fibrils with amide bonds of A, B, I, II, and III. Furthermore, the characterization of micro-collagen showed a particle size distribution from the smallest particles which was 668 – 1581nm with the highest intensity at a particle size of 1146 nm according to PSA analysis and corresponding with the morphology of micro-collagen through visualization using SEM. It indicates that the carp scales waste have the potential to be used as an alternative source to find supply micro-collagen.


Cite this article:
Rasmi Zakiah Oktarlina, Syaiful Bahri, Andi Nafisah Tendri Adjeng. Production and Characterization of Micro-Collagen from Carp Scales Waste (Cyprinus carpio). Research Journal of Pharmacy and Technology. 2022; 15(5):1995-2. doi: 10.52711/0974-360X.2022.00331

Cite(Electronic):
Rasmi Zakiah Oktarlina, Syaiful Bahri, Andi Nafisah Tendri Adjeng. Production and Characterization of Micro-Collagen from Carp Scales Waste (Cyprinus carpio). Research Journal of Pharmacy and Technology. 2022; 15(5):1995-2. doi: 10.52711/0974-360X.2022.00331   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-5-13


REFERENCES:
1.    Nugroho E, Sukadi MF, Huwoyon GH. Beberapa jenis ikan lokal yang potensial untuk budidaya: domestikasi, teknologi pembenihan, dan pengelolaan kesehatan lingkungan budidaya. Media Akuakultur. 2012;7(1):52–7. doi.org/10.15578/ma.7.1.2012.52-57.
2.    Virgantari F, Daryanto A, Kuntjoro SU. Dinamika Konsumsi Produk Perikanan di Indonesia. Ekologia: Jurnal Ilmiah Ilmu Dasar dan Lingkungan Hidup [Internet]. 2017;11(2):22–30.doi.org/ 10.33751/ekol.v11i2.257
3.    Suhenda N, Praseno O. Karakteristik Daging Ikan Mas (Cyprinus carpio) yang Diberi Pakan dengan Kadar Lemak yang Berbeda. Jurnal Penelitian Perikanan Indonesia [Internet]. 2017;6(1):13–8. doi.org/10.15578/jppi.6.1.2000.13-18.
4.    Samant RA, Gurav VL. A biosorption of heavy metal ions from effluent using waste fish scale. Asian Journal of Research in Chemistry. 2018;11(5):775–7. doi.org/10.5958/0974-4150.2018.00136.0
5.    Yusuf, N., Hamzah SN, Lamadi A, Kadim MK. Diversifikasi pengembangan produk hasil perikanan. Gorontalo: CV. Athra Samudra; 2018.
6.    Duan R, Zhang J, Du X, Yao X, Konno K. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food chemistry [Internet]. 2009;112(3):702–6. doi.org/10.1016/j.foodchem.2008.06.020
7.    Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomedical engineering online [Internet]. 2019;18(1):1–74.
8.    Silvipriya KS, Kumar KK, Bhat AR, Kumar BD, John A, Lakshmanan P. Collagen: Animal sources and biomedical application. J Appl Pharm Sci [Internet]. 2015;5(3):123–7. doi.org/10.7324/JAPS.2015.50322
9.    Verma S, Tippavajhala VK. A Review on the polymers for vegetarian soft gel capsule films. Research Journal of Pharmacy and Technology. 2017;10(9):3217–22. doi.org/10.5958/0974-360X.2017.00571.6
10.    Gómez-Guillén MC, Giménez B, López-Caballero ME al, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food hydrocolloids [Internet]. 2011;25(8):1813–27. doi.org/10.1016/j.foodhyd.2011.02.007
11.    Pallela R, Venkatesan J, Bhatnagar I, Shim Y, Kim S. Applications of marine collagen-based scaffolds in bone tissue engineering. Marine biomaterials: characterization, isolation and applications. CRC Press: Boca Raton, FL, USA; 2013. p. 519–28.
12.    Silva TH, Moreira-Silva J, Marques ALP, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. Marine drugs [Internet]. 2014;12(12):5881–901. doi.org/10.3390/md12125881
13.    Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, et al. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers [Internet]. 2020;12(10):2230. doi.org/10.3390/polym12102230
14.    Berillis P. Marine collagen: Extraction and applications. Research trends in biochemistry, molecular biology and microbiology. 2015;1–13.
15.    Suo-Lian W, Huai-Bin K, Dong-Jiao L. Technology for extracting effective components from fish scale. J Food Sci Eng [Internet]. 2017;7(7):351–8. doi.org/10.17265/2159-5828/2017.07.003
16.    Chinh NT, Manh VQ, Trung VQ, Lam TD, Huynh MD, Tung NQ, et al. Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Natural Product Communications [Internet]. 2019;14(7):1934578X19866288. org/10.1177/1934578X19866288.
17.    Pal GK, Suresh P V. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science and Engineering: C [Internet]. 2017;70:32–40. doi.org/10.1016/j.msec.2016.08.047
18.    Zhang J, Duan R, Ye C, Konno K. Isolation and characterization of collagens from scale of silver carp (Hypophthalmichthys molitrix). Journal of Food Biochemistry [Internet]. 2010;34(6):1343–54. doi.org/10.1111/j.1745-4514.2010.00439.x
19.    Liu D, Liang L, Regenstein JM, Zhou P. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry [Internet]. 2012;133(4):1441–8. doi.org/10.1016/j.foodchem.2012.02.032.
20.    Khan Y, Gupta P, Bihari B, Sharma VK, Aziz I. A Review-Miracle of Nanotechnology in Cosmetics. Research Journal of Topical and Cosmetic Sciences. 2014;5(1):15–22.
21.    Meena C, Mengi SA, Deshpande SG. Biomedical and industrial applications of collagen. In: Proceedings of the Indian Academy of Sciences-Chemical Sciences [Internet]. Springer; 1999. p. 319–29. doi.org/10.1007/BF02871912.
22.    Papi M, Palmieri V, Maulucci G, Arcovito G, Greco E, Quintiliani G, et al. Controlled self assembly of collagen microparticle. Journal of Microparticle Research [Internet]. 2011;13(11):6141–7. doi.org/10.1007/s11051-011-0327-x
23.    Pringgandini LA, Indarti GY, Melinda M, Sari M. Effectiveness of micro-collagen spray of goldfish (Cyprinus carpio) scales waste in accelerating the incision wound healing process. Jurnal Kedokteran Gigi Universitas Padjadjaran [Internet]. 2018;30(2):113–9. doi.org/10.24198/jkg.v30i3.18529
24.    Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. International Scholarly Research Notices [Internet]. 2014;2014. doi.org/10.1155/2014/843687
25.    Sionkowska A, Adamiak K, Musiał K, Gadomska M. Collagen based materials in cosmetic applications: A review. Materials [Internet]. 2020;13(19):4217. doi.org/10.3390/ma13194217.
26.    Abd Samad NAB, Sikarwar AS. Collagen: New Dimension in Cosmetic and Healthcare. International Journal of Biochemistry Research & Review [Internet]. 2016;14(3):1–8.
27.    Huda N, Seow EK, Normawati MN, Aisyah NMN. Preliminary study on physicochemical properties of duck feet collagen. International Journal of Poultry Science [Internet]. 2013;12(10):615.
28.    Trilaksani W, Adnyane IKM, Riyanto B, Safitri N. Nano collagen of the grouper swim bladder in compliance with quality standard of cosmetics materials. In: IOP Conference Series: Earth and Environmental Science [Internet]. IOP Publishing; 2020. p. 12050.
29.    Kumari P, Sen S, Suneetha V. Production of glue from tannery effluent by physical, chemical and biological methods. Research Journal of Pharmacy and Technology. 2016;9(8):1031–5. doi.org/10.5958/0974-360X.2016.00195.5
30.    Pappachen LK, Sreelakshmi KS. Phytochemical screening and in vitro cytotoxicity studies of Mussaenda frondosa Linn leaves. Research Journal of Pharmacy and Technology. 2017;10(12):4227–30. doi.org/10.5958/0974-360X.2020.01020.3
31.    Mahboob S, Haider S, Sultana S, Al-Ghanim K, Al-Misned F, Al-Balawi H, et al. Isolation and characterisation of collagen from the waste material of two important freshwater fish species. Journal of Animal and Plant Sciences. 2014;24(6):1802–10.
32.    Fengxiang Z, Anning W, Zhihua L, Shengwen H, Lijun S. Preparation and characterisation of collagen from freshwater fish scales. Food and Nutrition Sciences [Internet]. 2011;2011. doi.org/10.4236/fns.2011.28112.
33.    Zulkifeli NRAN, Zain HHM, Zainol I, Musa NHC. The properties of Hydrolysed Collagen from Oreochromis mossambicus’s scale and their effect towards Cell viability. Research Journal of Pharmacy and Technology. 2020;13(12):5855–60. doi.org/10.5958/0974-360X.2020.01020.3
34.    Sahumena MH, Mabilla SY, Ningsih SR, Adjeng ANT, Aswan M, Nisa M. Preparation and Evaluation of Physical Characteristics of Vitamin E Nanoemulsion using virgin coconut Oil (VCO) and olive oil as oil phase with variation Concentration of tween 80 Surfactant. Research Journal of Pharmacy and Technology. 2020;13(7):3232–6. doi.org/10.5958/0974-360X.2020.00572.7
35.    Kalaiselvi S, Manimaran V, Damodharan N. Microparticle as a powerful tool to penetrate the Blood-brain barrier in the treatment of Neurodegenerative disease: Focus on recent advances. Research Journal of Pharmacy and Technology. 2020;13(5):2135–43. doi.org/10.5958/0974-360X.2020.00384.4
36.    Rezkita F, Wibawa KGP, Nugraha AP. Curcumin loaded Chitosan microparticle for accelerating the post extraction wound healing in diabetes mellitus patient: a review. Research Journal of Pharmacy and Technology. 2020;13(2):1039–42. doi.org/10.5958/0974-360X.2020.00191.2
37.    Ali S, Shabbir M, Shahid N. The structure of skin and transdermal drug delivery system-a review. Research journal of pharmacy and technology. 2015;8(2):103–9. doi.org/10.5958/0974-360X.2015.00019.0
38.    Pringgandini LA, Indarti GY, Melinda M, Sari M. Efektivitas spray nanokolagen limbah sisik ikan mas (Cyprinus carpio) untuk mempercepat proses penyembuhan luka insisi Effectiveness of micro-collagen spray of goldfish (Cyprinus carpio) scales waste in accelerating the incision wound healing process. Jurnal Kedokteran Gigi Universitas Padjadjaran. 2018;30(2):113–9. doi.org/10.24198/jkg.v30i3.18529.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available