Author(s):
Ankita Sahu, Vinit Singh Baghel
Email(s):
vsbaghel173@gmail.com
DOI:
10.52711/0974-360X.2022.00314
Address:
Ankita Sahu1, Vinit Singh Baghel2*
1NEERI, Jal Nigam, District Laboratory Chitrakoot, Uttar Pradesh.
2Department of Biotechnology, Guru Ghasidas University, Bilaspur, Chhattisgarh.
*Corresponding Author
Published In:
Volume - 15,
Issue - 4,
Year - 2022
ABSTRACT:
The ongoing COVID-19 pandemic has brought the entire world to a near lockdown. Having infected more than 6,54,08,787 people and claiming more than 15,09,743 lives as on 4th December 2020 it has made mankind to rethink over its claim of being highly advanced. Although we have come a long way both in terms of technology and medical advancements from 1918’s Spanish flu to latest novel coronavirus outbreak, still somehow we feel ourselves somewhat as helpless as we were back in 1918. There still remains a gap in understanding the full mechanism of the infection cycle of zoonotic diseases and their intensive relationships with their reservoir hosts. In this review we will be discussing why it’s still a challenge for us to fight these viral diseases and also how out of nowhere these diseases appear claiming millions of life every now and then. Also, we will try to understand how the reservoir ‘bats’ escape virulence.
Cite this article:
Ankita Sahu, Vinit Singh Baghel. Zoonosis and Bats: Evolution of Virulence and Disease Outbreaks. Research Journal of Pharmacy and Technology. 2022; 15(4):1877-2. doi: 10.52711/0974-360X.2022.00314
Cite(Electronic):
Ankita Sahu, Vinit Singh Baghel. Zoonosis and Bats: Evolution of Virulence and Disease Outbreaks. Research Journal of Pharmacy and Technology. 2022; 15(4):1877-2. doi: 10.52711/0974-360X.2022.00314 Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-4-80
REFERENCES:
1. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ; SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003 May 15; 348(20):1953-66. 10.1056/NEJMoa030781
2. Dobson AP, Carper ER. Infectious diseases and human population history. Bioscience. 1996 Feb 1; 46(2):115-26. 10.2307/1312814
3. Brook CE, Dobson AP. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends in microbiology. 2015 Mar 1; 23(3):172-80. 10.1016/j.tim.2014.12.004
4. Devi GC, Eswar KA. An Emergency Outbreak Situation. Asian Journal of Pharmaceutical Research. 2018 Dec 1; 8(4). 10.5958/2231-5691.2018.00043.6
5. Sunitha D, Anusri P, Sudhakar M. A Review on Nipah Virus. Asian Journal of Pharmaceutical Research. 2019 Nov 28; 9(4):307-11. 10.5958/2231-5691.2019.00037.6
6. Carini A. Sur une grande épizootie de rage. Ann Inst Pasteur. 1911; 25:843-6. (translated by Google from French)
7. Roes FL. On the Evolution of Virulent Zoonotic Viruses in Bats. Biological Theory. 2020 Dec; 15(4):223-5. doi.org/10.1007/s13752-020-00363-6
8. Wynne JW, Wang LF. Bats and viruses: friend or foe?. PLoS Pathog. 2013 Oct 31; 9(10):e1003651. doi.org/10.1371/journal.ppat.1003651
9. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Cottontail VM, Rasche A, Yordanov S, Seebens A, Knörnschild M, Oppong S, Adu Sarkodie Y, Pongombo C, Lukashev AN, Schmidt-Chanasit J, Stöcker A, Carneiro AJ, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EK, Kruppa T, Franke CR, Kallies R, Yandoko ER, Herrler G, Reusken C, Hassanin A, Krüger DH, Matthee S, Ulrich RG, Leroy EM, Drosten C. Bats host major mammalian paramyxoviruses. Nat Commun. 2012 Apr 24; 3:796. 10.1038/ncomms1796
10. Baker ML, Schountz T, Wang LF. Antiviral immune responses of bats: a review. Zoonoses and public health. 2013 Feb; 60(1):104-16. 10.1111/j.1863-2378.2012.01528.x
11. Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2001 Jul 29; 356(1411):983-9. doi.org/10.1098/rstb.2001.0888
12. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017 Jun; 546(7660):646-50. doi.org/10.1038/nature22975
13. Luis, A.D., Hayman, D.T., O'Shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., Mills, J.N., Timonin, M.E., Willis, C.K., Cunningham, A.A. and Fooks, A.R. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proc Biol Sci. 2013 Apr 7; 280(1756): 20122753. 10.1098/rspb.2012.2753
14. Jain RS, Jain TG, Ishikar SK. Impact of Covid-19 on Changing Habits and Health Issues of the Public. Asian Journal of Management. 2020 Dec 11; 11(4):524-8. 10.5958/2321-5763.2020.00077.3
15. Roes FL. The curious case of the Spanish flu. Biol Theory 2018 13:243–244. 10.1007/s13752-018-0307-9
16. Ewald PW. The evolution of virulence. Sci Am 1993 268(4):86–93. 10.1038/scientificamerican0493-86
17. Short KR, Kedzierska K, van de Sandt CE. Back to the future: lessons learned from the 1918 influenza pandemic. Front Cell Infect Microbiol. 2018; 8:343. 10.3389/fcimb.2018.00343
18. Ahmed R, Oldstone MBA, Palese P. Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat Immunol. 2007; 8(11):1188–93. 10.1038/ni1530
19. Noor R, Maniha SM. A brief outline of respiratory viral disease outbreaks: 1889–till date on the public health perspectives. VirusDisease. 2020 Sep 2:1-9. 10.1007/s13337-020-00628-5
20. De Jong JC, Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME. Influenza virus: a master of metamorphosis. J Infect. 2000; 40(3):218–28. https://doi.org/10.1053/jinf.2000.0652
21. Hisham A. Abbas. Inhibition of Virulence of Pseudomonas aeruginosa: A Novel Role of Metronidazole Against Aerobic Bacteria. Research J. Pharm. and Tech. 8(12): Dec., 2015; Page 1640-1644 0.5958/0974-360X.2015.00295.4
22. Sumod A.Salman, Wejdan R.Taj Aldeen. Antibacterial, Anti-virulence factors of Hibiscus sabdariffa extracts in Staphylococcus aureus isolated from patients with urinary tract infection. Research J. Pharm. and Tech 2018; 11(2): 735-740. 10.5958/0974-360X.2018.00138.5
23. Nusrat Nahar, Samia Naz, Sharmeen Asad, Muhammed Mahfuzur Rahman, Tufael Ahmed, Md. Kamrul Islam, D. A. Anwar Al Aman, Nurul Islam Setu, Md. Shahidulla Kayser, Md. Shariful Islam, Md. Abdul Bari, Ridwan Bin Rashid. Analysis of the Genotypic Distribution of Virulence and Antibiotic Resistance Biomarkers of Listeria Species in-silico. Research J. Pharm. and Tech 2018; 11(6): 2173-2179. 10.5958/0974-360X.2018.00402.X
24. Ghaidaa J. Mohammed, Mohammed S. Abdul-Razaq. Grouping and Revelation the significant Virulence genes of Escherichia coli isolated from Patients with Urinary Tract Infections. Research J. Pharm. and Tech 2018; 11(12): 5483-5489. 10.5958/0974-360X.2018.00999.X
25. Aliaa Abdelghafar, Nehal Yousef, Momen Askoura. Combating Staphylococcus aureus biofilm with Antibiofilm agents as an efficient strategy to control bacterial infection. Research J. Pharm. and Tech. 2020; 13(11):5601-5606. 10.5958/0974-360X.2020.00977.4
26. Sohayati AR, Hassan L, Sharifah SH, Lazarus K, Zaini CM, Epstein JH, et al. Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus. Epidemiol Infect. 2011; 139:1570–9. 10.1017/S0950268811000550
27. Wang LF, Walker PJ, Poon LLM. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Curr Opin Virol. 2011; 1:649–57. 10.1016/j.coviro.2011.10.013
28. Thomas MD. Physiological ecology and energetics of bats. In Bat Biology (eds. Kunz, T. H.; Fenton, M. B.), 2004.
29. Turmelle, A.S. and Olival, K.J. Correlates of viral richness in bats (order Chiroptera). Ecohealth 2009; 6, 522–539. 10.1007/s10393-009-0263-8
30. O’Shea, T.J. et al. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 2014; 20, 741–745. 10.3201/eid2005.130539
31. Hayman, D.T.S. et al. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 2013; 60, 2–21. 10.1111/zph.12000
32. Cui, J. et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 2007; 13, 1526–1532. 10.3201/eid1310.070448
33. Quan, P. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc. Natl. Acad. Sci. U.S.A. 2012; 110, 8194–8199. 10.1073/pnas.1303037110
34. Drexler, J.F. et al. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 2013; 110, 16151–16156. 10.1073/pnas.1308049110
35. Jepsen GL. Early eocene bat from Wyoming. Science 1996; 154:1333–1339. 10.1126/science.154.3754.1333
36. Cogswell-Hawkinson, A. et al. Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J. Virol. 2012; 86, 5791–5799. 10.1128/JVI.00201-12
37. Mühldorfer, K. Bats and bacterial pathogens: a review. Zoonoses Public Health 2013; 60, 93–103 10.1111/j.1863-2378.2012.01536.x
38. Evans, N.J. et al. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 2009; 15, 1330– 1331. 10.3201/eid1508.090475
39. Blehert, D.S. et al. Acute pasteurellosis in wild big brown bats (Eptesicus fuscus). J. Wildl. Dis. 2014; 50, 136–139 10.7589/2012-02-063
40. Lord, J.S. et al. Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/Pipistrellus pygmaeus) (Chiroptera: Vespertilionidae) of England. Parasitology 2012; 139, 366–374. 10.1017/S0031182011002046
41. Hamilton, P.B. et al. The evolution of Trypanosoma cruzi: the ‘‘bat seeding’’ hypothesis. Trends Parasitol. 2012; 28, 136–141. 10.1016/j.pt.2012.01.006
42. Cabral, H.R.A. The tumoricidal effect of Trypanosoma cruzi: its intracellular cycle and the immune response of the host. Med. Hypotheses 2000; 54, 1–6 10.1054/mehy.1998.0808
43. Schaer, J. et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. U.S.A. 2013; 110, 17415–17419. doi.org/10.1073/pnas.1311016110
44. Greer, D.L. and McMurray, A.N. (1981) Pathogenesis of experimental histoplasmosis in the bat, Artibeus lituratus. Am. J. Trop. Med. Hyg. 30, 653–659. 10.4269/ajtmh.1981.30.653
45. Meteyer, C.U. et al. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence 2012; 3, 1-6. 10.4161/viru.22330
46. Halpin, K. et al. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am. J. Trop. Med. Hyg. 2011; 85, 946–951. 10.4269/ajtmh.2011.10-0567
47. Turmelle, A.S. et al. Host immunity to repeated rabies virus infection in big brown bats. J. Gen. Virol. 2010; 91, 2360–2366. 10.1099/vir.0.020073-0
48. Wang, Z.W. et al. Attenuated rabies virus activates, while pathogenic rabies virus evades the host innate immune responses in the central nervous system. J. Virol. 2005; 79, 12554–12565. 10.1128/JVI.79.19.12554-12565.2005
49. Kosoy, M. et al. Bartonella spp. in bats, Kenya. Emerg. Infect. Dis. 2010; 16, 1875–188. 10.3201/eid1612.100601
50. Evans, N.J. et al. Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerg. Infect. Dis. 2009; 15, 1330– 1331. 10.3201/eid1508.090475
51. Chakraborty, A.K. and Chakravarty, A.K. Dichotomy of lymphocyte population and cell-mediated immune responses in a fruit bat. J. Ind. Inst. Sci. 1983; 64, 157–168
52. Chawla-Sarkar, M. et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 2003; 8, 237–249. 10.1023/a:1023668705040
53. Sulkin, S.E. and Allen, R. Virus Infections in Bats. Monogr Virol.1974; 8(0):1-103. PMID: 4367453
54. Virtue, E.R. et al. Interferon production and signaling pathways are antagonized during Henipavirus infection of fruit bat cell lines. PLoS ONE 2011; 6, e22488. 10.1371/journal.pone.0022488
55. Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013; 339, 456–460. 10.1126/science.1230835
56. Graham, A.L. et al. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 2005; 36, 373–397. doi.org/10.1146/annurev.ecolsys.36.102003.152622
57. Katzourakis, A. and Gifford, R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010; 6, e1001191. doi.org/10.1371/journal.pgen.1001191
58. Dobson, A.P. What links bats to emerging infectious diseases? Science 2005; 310, 628–629. 10.1126/science.1120872
59. Blatteis CM. Fever: pathological or physiological, injurious or beneficial? J Therm Biol. 2003; 28:1–13. 10.5582/irdr.2016.01009
60. Hasday JD, Fairchild KD, Shanholtz C. The role of fever in the infected host. Microbes Infect. 2000; 2:1891–904. 10.1016/s1286-4579(00)01337-x
61. Thomas SP, Suthers RA. The physiology and energetics of bat flight. J Exp Biol. 1972; 57:317–35.
62. Bundle MW, Hansen KS, Dial KP. Does the metabolic rate–flight speed relationship vary among geometrically similar birds of different mass? J Exp Biol. 2007; 210:1075–83. 10.1242/jeb.02727
63. Hock, R.J. The metabolic rates and body temperatures of bats. Biol. Bull. 1951; 101, 289–299.
64. Koopal, S. et al. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog. 2007; 3, 1348– 1360. doi.org/10.1371/journal.ppat.0030140
65. Marchi, S. et al. Mitochondria–ROS crosstalk in the control of cell death and aging. J. Signal. Transduct. 2012; 329635. 0.1155/2012/329635
66. Krysko, D.V. et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011; 32, 157–164. 10.1016/j.it.2011.01.005.
67. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001; 2, 907–916. 10.1038/ni1001-907
68. Arnoult, D. et al. The role of mitochondria in cellular defense against microbial infection. Semin. Immunol. 2009; 21, 223–232. 10.1016/j.smim.2009.05.009
69. Morse SS, Mazet JAK, Woolhouse M, et al. Prediction and prevention of the next pandemic zoonosis. Lancet 2012; 380: 1956–65. 10.1016/S0140-6736(12)61684-5
70. Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and influenza at the centenary of the 1918–1919 Spanish influenza pandemic: mechanisms of psychosis risk. Front Psychiatry. 2020; 11:72. 10.3389/fpsyt.2020.00072
71. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome.N Engl J Med. 2003; 348(20):1953–66. 10.1056/NEJMoa030781
72. Leung Y, To M, Lam T, Yau S, Leung O, Chuang S. Epidemiology of human influenza A(H7N9) infection in Hong Kong. J Microbiol Immunol Infect. 2017; 50(2):183–8. 10.1016/j.jmii.2015.06.004
73. CDC (Centers for Disease Control and Prevention). 1918 Pandemic influenza: three waves. https://www.cdc.gov/flu/pandemic-resources/1918-commemoration/three-waves.htm accessed on Dec 10, 2020
74. Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH, Cai Y, Wang W, Yang L, He D. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis.2020; 93:211–6. 10.1016/j.ijid.2020.02.058
75. Shiv Kumar Kushawaha, Neelam Raj, Manish Sinha, Puneet Kumar, Mahendra Singh Ashawat. Nipah Virus and its Outbreaks in Tropical Areas. Research J. Pharm. and Tech. 2020; 13(1): 491-497. 10.5958/0974-360X.2020.00095.5
76. Taylor LH, Latham SM, Woolhouse MEJ. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 2001; 356: 983–89. 10.1098/rstb.2001.0888
77. Karesh WB, Vora N. One world—one health. Emerging Infections 9. 2010 Sep 2:327-35. 10.7861/clinmedicine.9-3-259
78. Coker R, Rushton J, Mounier-Jack S, et al. Towards a conceptual framework to support one-health research for policy on emerging zoonoses. Lancet Infect Dis 2011; 11: 326–31. 10.1016/S1473-3099(10)70312-1
79. PREDICT Consortium Reducing Pandemic Risk, Promoting Global Health (2014).
80. Roy Bibhas, Dan Amitabha, Pasi A R, Jalaluddeen M, Kunal Kanti De. Identification of disease outbreaks and role of data analysis: An experience from Nadia district in West Bengal - India. Int. J. Rev. and Res. Social Sci. 4(1): Jan. - Mar., 2016; Page 26-30.