Author(s): Liyana Majid, Sengamalam Radhakrishnan, Vignesh Ramachandran, Ravindran Muthukumarasamy

Email(s): ravindran@unikl.edu.my

DOI: 10.52711/0974-360X.2022.00990   

Address: Liyana Majid1, Sengamalam Radhakrishnan1, Vignesh Ramachandran2, Ravindran Muthukumarasamy1* 1Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, No. 3, Jalan Greentown, 30450 Ipoh, Perak Darul Ridzuan, Malaysia.
2Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak, No. 3, Jalan Greentown, 30450 Ipoh, Perak Darul Ridzuan, Malaysia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
Coronavirus disease 2019 (COVID-19) outbreak started in Wuhan, China when people started with the symptoms of respiratory disorder. The onset of this disease have symptoms like fever, dry cough, fatigue, and difficulty in breathing. The nature of SARS-CoV-2 seems highly contagious as it also can be spread with asymptomatically infected individuals. It has been more than a year which this outbreak have been announced as a pandemic by World Health Organization (WHO) due to major public health crisis and uncontrollable around the globe. Some countries have taken initiatives in inventing vaccines and step up in the clinical trial process since a vaccine is an all-powerful tool which it always been a saviour in fighting infectious disease. In searching for the vaccine, researchers had studied the previously published article of SARS-CoV or MERS as in the beginning, in light, there will be a suitable vaccine to fight this pandemic situation. Recent research on the vaccine has been tested to seek the right vaccine for COVID-19. This study is to focus on the current vaccine development against COVID-19 and to explore the potential vaccines’ characteristics that have been studied by the previous proven research findings. This review was done based on the research articles and reviews published until the end of April 2021 through established scientific search engines and related scientific platforms based on the inclusion criteria with its related keywords like coronavirus, SARS-CoV-2, COVID-19 Vaccine, clinical trials, and COVID-19 vaccine development. This review summarized a few vaccine candidates that have entered clinical trials and some supported evidence from Phase I until Phase III clinical trial studies that have been published and reported. In this review, 12 vaccine candidates have the potential to against SARS-CoV-2. Thus, their vaccine platform, characteristic as well as its efficacy studies have been discussed.


Cite this article:
Liyana Majid, Sengamalam Radhakrishnan, Vignesh Ramachandran, Ravindran Muthukumarasamy. Review on COVID-19 Vaccines. Research Journal of Pharmacy and Technology 2022; 15(12):5868-4. doi: 10.52711/0974-360X.2022.00990

Cite(Electronic):
Liyana Majid, Sengamalam Radhakrishnan, Vignesh Ramachandran, Ravindran Muthukumarasamy. Review on COVID-19 Vaccines. Research Journal of Pharmacy and Technology 2022; 15(12):5868-4. doi: 10.52711/0974-360X.2022.00990   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-84


REFERENCES:
1.    Kaur, S. P., and Gupta, V. (2020). COVID-19 Vaccine: A comprehensive status report. Virus Research, 1-12. doi:https://doi.org/10.1016/j.virusres.2020.198114.
2.    Draft Landscape and Tracker of COVID-19 Candidate Vaccines. (2021). Retrieved from World Health Organization: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
3.    Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Qin, C. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369, 77-81.
4.    Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Zhut, F. (2021). Safety, Tolerability, and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in Healthy Adults Aged 18–59 years: A Randomised, Double-blind, Placebo-controlled, Phase 1/2 Clinical Trial. The Lancet Infectious Disease, 21, 181-192. doi:https://doi.org/10.1016/S1473-3099(20)30843-4.
5.    Bueno, S., Abarca, K., González, P., Gálvez, N., Soto, J., Duarte, L., Kalergis, A. (2021). Interim Report: Safety and Immunogenicity of an Inactivated Vaccine against SARS-CoV-2 in Healthy Chilean Adults in a Phase 3 Clinical Trial. medRxiv, 1-32. doi:https://doi.org/10.1101/2021.03.31.21254494
6.    CoronaVac Shows Moderate Efficacy in Phase III Studies. (2021). Retrieved April 27, 2021, from The Pharmaletter: https://www.thepharmaletter.com/article/coronavac-shows-moderate-efficacy-in-phase-iii-studies
7.    He, P., Zou, Y., and Hu, Z. (2015). Advances in Aluminum Hydroxide-based Adjuvant Research and Its Mechanism. Human Vaccines and Immunotherapeutics, 11(2), 477-488. doi:10.1080/21645515.2014.1004026
8.    Wang, H., Zhang, Y., Huang, B., Deng, W., Quan, Y., Wang, W., Yang, X. (2020). Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. CellPress, 713-721.
9.    Xia, S., Zhang, Y., Wang, Y., Wang, H., Y. Y., Gao, G., Yang, X. (2020). Safety and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine, BBIBP-CorV: A Randomised, Double-blind, Placebo-controlled, Phase 1/2 Trial. The Lancet Infectious Disease, 21, 39-51. doi:https://doi.org/10.1016/S1473-3099(20)30831-8
10.    Vannice, K., and Martie, M. (2021). Evidence Assessment: Sinopharm/BBIBP COVID-19 vaccine. Retrieved May 1, 2021, from World health Organization: https://cdn.who.int/media/docs/default-source/immunization/sage/2021/april/2_sage29apr2021_critical-evidence_sinopharm.pdf
11.    Yadav, P., Ella, R., Kumar, S., Patil, D., Mohandas, S., Shete, A., Bhargava, B. (2021). Immunogenicity and Protective Efficacy of Inactivated SARS-CoV-2 Vaccine Candidate, BBV152 in Rhesus Macaques. Nature Communications, 12(1386), 1-11. doi:https://doi.org/10.1038/s41467-021-21639-w
12.    Ella, R., Vadrevu, K., Jogdand, H., Prasad, S., Reddy, S., Sarangi, V., Bhargava, B. (2021). Safety and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine, BBV152: A Double-blind, Randomised, Phase 1 Trial. The Lancet Infectious Disease, 21(5), 637-646. doi:https://doi.org/10.1016/S1473-3099(20)30942-7
13.    Ella, R., Reddy, S., Jogdand, H., Sarangi, V., Ganneru, B., Prasad, S., Vadveru, K. (2021). Safety and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine, BBV152: Interim Results from a Double-blind, Randomised, Multicentre, Phase 2 Trial, and 3-month Follow-up of a Double-blind, Randomised Phase 1 Trial. The Lancet Infectious Disease, 1-12. doi:10.1016/s1473-3099(21)00070-0
14.    Sapkal, G., Yadav, P., Ella, R., Deshpande, G., Sahay, R., Gupta, N., Bhargava, B. (2021). Inactivated COVID-19 Vaccine BBV152/COVAXIN Effectively Neutralizes Recently Emerged B1.1.7 variant of SARS-CoV-2. Journal of Travel Medicine, 1-10. doi:https://doi.org/10.1093/jtm/taab051
15.    COVAXIN - India's First Indigenous COVID-19 Vaccine. (2021). Retrieved April 26, 2021, from Bharat Biotech: https://www.bharatbiotech.com/covaxin.html
16.    Kyriakidis, N., López-Cortés, A., González, E., Grimaldos, A., and Prado, E. (2021). SARS-CoV-2 Vaccines Strategies: A Comprehensive Review of Phase 3 Candidates. npj Vaccines, 6(1), 1-17. doi:10.1038/s41541-021-00292-w.
17.    Corbett, K., Flynn, B., Foulds, K., Francica, J., Barnum-Boyoglu, S., Werner, A., Graham, B. (2020). Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. The New England Journal of Medicine, 383(16), 1544-1555. doi:10.1056/NEJMoa2024671.
18.    Anderson, E., Rouphael, N., Widge, A., Jackson, L., Roberts, P., Makhene, M., Beigel, J. (2020). Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. The New England Journal of Medicine, 383(25), 2427-2438. doi:10.1056/NEJMoa2028436.
19.    Chu, L., McPhee, R., Huang, W., Bennet, H., Pajon, R., Nestorova, B., and Leav, B. (2021). A Preliminary Report of a Randomized Controlled Phase 2 Trial of the Safety and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine. Vaccine, 1-10. doi:10.1016/j.vaccine.2021.02.007.
20.    Baden, L., El Sahly, H., Essink, B., Kotloff, K., Frey, S., Novak, R., Zaks, T. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England Journal of Medicine, 384(5), 403-416. doi: 10.1056/NEJMoa2035389
21.    Sahin, U., Muik, A., Derhovanessian, E., Vogler, I., Kranz, L. M., Vormehr, M., Türeci, Z. (2020). COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature, 586(7830), 594-599. doi:10.1038/s41586-020-2814-7 97.
22.    Vogel, A. B., Kanevsky, I., Che, Y., Swanson, K. A., Muik, A., Vormehr, M., Sahin, U. (2021). BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2. Nature, 592(7853), 283-289. doi:10.1038/s41586-021-03275-y.
23.    Walsh, E. E., Frenck, R. W., Falsey, A. R., Kitchin, N., Absalon, J., Gurtman, A., Gruber, W. (2020). Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. The New England Journal of Medicine, 383(25), 2439-2450. doi:10.1056/NEJMoa2027906.
24.    Kondili, M., Roux, M., Vabret, N., and  Bailly-Bechet, M. (2016). Innate Immune System Activation by viral RNA: How to Predict it? Virology, 169-178.
25.    Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., W.C, G. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 383(27), 2603-2615. doi:10.1056/nejmoa2034577.
26.    Fausther-Bovendo, H., and Kobinger, G. (2014). Pre-existing Immunity against Ad Vectors. Human Vaccines and Immunotherapeutics, 10(10), 2875-2884. doi:10.4161/hv.29594.
27.    Tatsis, N., and  Ertl, H. (2004). Adenoviruses as Vaccine Vectors. Molecular Therapy, 10(4), 616-629. doi:10.1016/j.ymthe.2004.07.013.
28.    Zhu, F., Li, Y., Guan, X., Hou, L., Wang, W., Li, J., Chen, W. (2020). Safety, Tolerability, and Immunogenicity of a Recombinant Adenovirus type-5 vectored COVID-19 Vaccine: A Dose-escalation, Open-label, Non-randomised, First-in-human Trial. The Lancet, 395(10240), 1845-1854. doi:10.1016/s0140-6736(20)31208-3.
29.    Zhu, F., Li, Y., Guan, X., Hou, L., Wang, W., Li, J., Chen, W. (2020). Immunogenicity and Safety of a Recombinant Adenovirus type-5-vectored COVID-19 Vaccine in Healthy Adults aged 18 years or older: A Randomised, Double-blind, Placebo controlled, Phase 2 Trial. The Lancet, 396(10249), 479-488. doi:10.1016/s0140-6736(20)31605-6.
30.    Clinical Trial of Recombinant Novel Coronavirus Vaccine (Adenovirus Type 5 Vector) Against COVID-19. (2021). Retrieved April 20, 2021, from ClinicalTrials.gov: https://clinicaltrials.gov/ct2/show/NCT04540419.
31.    Yan, Y., Pang, Y., Lyu, Z., Wang, R., Wu, X., You, C., Pang, C. (2021). The COVID-19 Vaccines: Recent Development, Challenges and Prospects. Vaccines, 9(4), 349- 364.
32.    Van Doremalen, N., Lambe, T., A, S., Belij-Rammerstorfer, S., Purushotham, J. N., Port, J. R., Munster, V. J. (2020). ChAdOx1 n-CoV-19 Vaccine Prevents SARS-CoV-2 Pneumonia in Rhesus Macaques. Nature, 586(7830), 578-582. doi:https://doi.org/10.1038/s41586-020-2608-y.
33.    Folegatti, P., Ewer, K., Aley, P., Angus, B., Becker, S., Belij-Rammerstorfer, S., Pollard, A. (2020). Safety and Immunogenicity of the ChAdOx1 nCoV-19 Vaccine against SARS-CoV-2: A Preliminary Report of A Phase 1/2, Single-blind, Randomised Controlled Trial. The Lancet, 396, 467-478. doi:https://doi.org/10.1016/S0140-6736(20)31604-4.
34.    Investigating a Vaccine Against COVID-19. (2020). Retrieved April 19, 2021, from ClinicalTrials.gov: https://clinicaltrials.gov/ct2/show/NCT04400838.
35.    Goodwin, K., Viboud, C., and  Simonsen, L. (2006). Antibody Response to Influenza Vaccination in the Elderly: A Quantitative Review. Vaccine, 24(8), 1159-1169. doi:10.1016/j.vaccine.2005.08.105.
36.    Ramasamy, M., Minassian, A., Ewer, K., Flaxman, A., Folegatti, P., Owens, D., Pollard, A. (2020). Safety and Immunogenicity of ChAdOx1 nCoV-19 Vaccine Administered in a Prime-boost Regimen in Young and Old Adults (COV002): A Single-blind, Randomised, Controlled, Phase 2/3 Trial. The Lancet, 396(10267), 1979-1993. doi:https://doi.org/10.1016/S0140-6736(20)32466-1.
37.    Voysey, M., Costa Clemens, S., Madhi, S., Weckx, L., Folegatti, P., Angus, B., A Duncan, C. (2021). Safety and Efficacy of the ChAdOx1 nCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99-111. doi:10.1016/S0140-6736(20)32661-1.
38.    Schultz, N., Sørvoll, I., Michelsen, A., Munthe, L., Lund-Johansen, F., Ahlen, M.,  Holme, P. (2021). Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. The New England Journal of Medicine, 1-7. doi:10.1056/nejmoa2104882.
39.    Greinacher, A., Thiele, T., Warkentin, T., Weisser, K., Kyrle, P., and  Eichinger, S. (2021). Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. The New England Journal of Medicine, 1-10. doi:10.1056/NEJMoa2104840.
40.    AZD1222 US Phase III Trial Met Primary Efficacy Endpoint in Preventing COVID-19 at Interim Analysis. (2021). Retrieved April 28, 2021, from AstraZeneca: https://www.astrazeneca.com/media-centre/press-releases/2021/astrazeneca-us-vaccine-trial-met-primary-endpoint.html.
41.    Mellet, J., and  Pepper, M. S. (2021). A COVID-19 Vaccine: Big Strides Come with Big Challenges. Vaccines, 9(39), 1-14. doi:https://doi.org/10.3390/vaccines9010039.
42.    Mercado, N., D.H.B., R.Z., F.W., P.S., M.M., H.S. (2020). Single-shot Ad26 Vaccine Protects Against SARS-CoV-2 in Rhesus Macaques. Nature, 586(7830), 583-588. doi:10.1038/s41586-020-2607-z.
43.    Sadoff, J., Le Gars, M., Shukarev, G., Heerwegh, D., Truyers, C. d., Tete, S., Schuitemaker, H. (2021). Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. The New England Journal of Medicine, 1-12. doi:10.1056/nejmoa2034201.
44.    Sadoff, J., Gray, G., Vandebosch, A., Cárdenas, V., Shukarev, G., Grinsztejn, B., Douoguih, M. (2021). Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. The New England Journal of Medicine, 384, 2187-2201. doi:10.1056/NEJMoa2101544.
45.    Sadoff, J., Davis, K., and Douoguih, M. (2021). Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination — Response from the Manufacturer. The New England Journal of Medicine, 1-2. doi:10.1056/NEJMc2106075.
46.    Logunov, D., Dolzhikova, I., Scheblyakov, D., Tukhvatulin, A., Zubkova, O., Dzharullaeva, A., Gintsburg, A. (2021). Safety and Efficacy of an rAd26 and rAd5 Vector-based Heterologous Prime-boost COVID-19 Vaccine: An Interim Analysis of A Randomised Controlled Phase 3 Trial in Russia. The Lancet, 397(10275), 671-681. doi:10.1016/s0140-6736(21)00234-8.
47.    Logunov, D., Dolzhikova, I., Scheblyakov, D., Tukhvatulin, A., Zubkova, O., Dzharullaeva, A., Gintsburg, A. (2020). Safety and Immunogenicity of an rAd26 and rAd5 Vector-based Heterologous Prime-boost COVID-19 Vaccine in Two Formulations: Two Open, Non-Randomised Phase 1/2 Studies from Russia. The Lancet, 396, 887-897. doi:https://doi.org/10.1016/S0140-6736(20)31866-3.
48.    INOVIO and Advaccine Announce Exclusive Partnership To Commercialize COVID-19 DNA Vaccine Candidate, INO-4800, in Greater China. (2021). Retrieved April 17, 2021, from INOVIO: https://ir.inovio.com/news-releases/news-releases-details/2021/INOVIO-and-Advaccine-Announce-Exclusive-Partnership-To-Commercialize-COVID-19-DNA-Vaccine-Candidate-INO-4800-in-Greater-China/default.aspx.
49.    Tebas, P., Yang, S., Boyer, J., Reuschel, E., Patel, A., Christensen-Quick, A., . . . Humeau, L. (2021). Safety and Immunogenicity of INO-4800 DNA Vaccine against SARS-CoV-2: A Preliminary Report of an Open-Label, Phase 1 Clinical Trial. EClinicalMedicine, 31, 100689-100697. doi:10.1016/j.eclinm.2020.100689.
50.    INOVIO's COVID-19 Vaccine Candidate, INO-4800, Provides Broad Cross-reactive Immune Responses In Humans Against Variants of Concern. (2021). doi:https://ir.inovio.com/news-releases/news-releases-details/2021/INOVIOs-COVID-19-Vaccine-Candidate-INO-4800-Provides-Broad-Cross-reactive-Immune-Responses-In-Humans-Against-Variants-of-Concern/default.aspx.
51.    Tian, J. H., Patel, N., Haupt, R., Zhou, H., Weston, S., Hammond, H., . . . Glenn, G. (2021). SARS-CoV-2 Spike Glycoprotein Vaccine Candidate NVX-CoV2373 Immunogenicity in Baboons and Protection in Mice. Nature Communications, 12(1), 1-14. doi:https://doi.org/10.1038/s41467-020-20653-8.
52.    Novavax Announces Positive Phase 1 Data for its COVID-19 Vaccine Candidate. (2020). Retrieved April 16, 2021, from Novavax: https://ir.novavax.com/news-releases/news-release-details/novavax-announces-positive-phase-1-data-its-covid-19-vaccine.
53.    Demonstrates 89.3% Efficacy in UK Phase 3 Trial. (2021). Retrieved April 16, 2021, from Novavax: https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3.
54.    Mahase, E. (2021). Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ. doi:https://doi.org/10.1136/bmj.n296.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available