Author(s): Rosmalena Rosmalena, Aldo O. Senlia, Muhammad Hanafi, Nina Artanti, Eldafira Eldafira, Supri I. Handayani, Puspa D. Lotulung, Sri Hartati, Berna Elya, Astri Zulfa, Vivitri D. Prasasty

Email(s): rosmalena2018@gmail.com , prasasty@ulm.edu

DOI: 10.52711/0974-360X.2022.00985   

Address: Rosmalena Rosmalena1*, Aldo O. Senlia1, Muhammad Hanafi2,3, Nina Artanti3, Eldafira Eldafira4, Supri I. Handayani5, Puspa D. Lotulung5, Sri Hartati5, Berna Elya6, Astri Zulfa7, Vivitri D. Prasasty8*
1Department of Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10440, Indonesia.
2Research Centre for Chemistry – BRIN, Indonesian Institute of Sciences, South Tangerang 15314, Indonesia.
3Faculty of Pharmacy, Pancasila University, Jakarta 12640, Indonesia.
4Department of Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10440, Indonesia.
5Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta 10440, Indonesia.
6Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia.
7Faculty of Biology, Universitas Nasional, Jakarta, Indonesia 12520, Indonesia.

8School of Basic Pharmaceuticals and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, United Stat

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
Diabetes is a growing problem in modern times. Treating diabetes can be done using various ways, from traditional to modern methods. Herbal medicine is a traditional form of medication. Herbs can be used to treat diabetes, such as Senna alexandrina. The effects of herbal medicine are linked with the solvent used. In making a herbal drink on an industrial and private scale, the solvent used is ethanol and water. This study aimed to determine the best solvent to produce antioxidant and antidiabetic effects from S. alexandrina leaves. In vitro analysis using DPPH and a-glucosidase enzyme was done to find the antioxidant and antidiabetic properties. S. alexandrina leaves were macerated using ethanol and water. All extract was screened for phytochemical contents, and the bioactive compounds were profiled using LC-MS/MS. Total phenolic and flavonoid contents were determined using gallic acid and quercetin as standard compounds. S. alexandrina leaves showed antioxidant and antidiabetic properties. Ethanol 50% extract showed the best antioxidant and antidiabetic properties, followed by ethanol and water extracts. The IC50 value of the antidiabetic activity of ethanol 50% was 33.151 µg/mL and the IC50 value of antioxidant power was 160.502 µg/mL. The bioactive compounds were profiled in this extract including torachrysone-8-O-ß-D-glucopyranoside, oroxin B, 3-O-[ß-D-glucopyra-nosyl-(12)]-ß-D-glucopyranosyl-kaempferol, 7-hydroxy-1-methoxy-2-methoxyxanthone, rhamnetin dan rubilactone.


Cite this article:
Rosmalena Rosmalena, Aldo O. Senlia, Muhammad Hanafi, Nina Artanti, Eldafira Eldafira, Supri I. Handayani, Puspa D. Lotulung, Sri Hartati, Berna Elya, Astri Zulfa, Vivitri D. Prasasty. Phytochemical, Antioxidant and Antidiabetic properties of Senna alexandrina Leaf Extract. Research Journal of Pharmacy and Technology 2022; 15(12):5835-0. doi: 10.52711/0974-360X.2022.00985

Cite(Electronic):
Rosmalena Rosmalena, Aldo O. Senlia, Muhammad Hanafi, Nina Artanti, Eldafira Eldafira, Supri I. Handayani, Puspa D. Lotulung, Sri Hartati, Berna Elya, Astri Zulfa, Vivitri D. Prasasty. Phytochemical, Antioxidant and Antidiabetic properties of Senna alexandrina Leaf Extract. Research Journal of Pharmacy and Technology 2022; 15(12):5835-0. doi: 10.52711/0974-360X.2022.00985   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-79


REFERENCES:
1.    Song P. Rudan D. Zhu Y. Fowkes FJ. Rahimi K. Fowkes FG. Rudan I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. The Lancet Global Health. 2019; 7(8): e1020-30. doi.org/10.7189/jogh.09.010427.
2.    Sunjaya AP. Sunjaya AF. Glycated hemoglobin targets and glycemic control: link with lipid, uric acid and kidney profile. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2018; 12(5): 743-748. doi.org/10.1016/j.dsx.2018.04.039.
3.    van der Schaft N. Schoufour JD. Nano J. Kiefte-de Jong JC. Muka T. Sijbrands EJ. Ikram MA. Franco OH. Voortman T. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: the Rotterdam Study. European Journal of Epidemiology. 2019; 34(9): 853-861. doi.org/10.1007/s10654-019-00548-9.
4.    Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. International Journal of Physiology, Pathophysiology and Pharmacology. 2019; 11(3): 45.
5.    Yang H. Jin XL. Am CWK. Yan SK. Oxidative stress and diabetes mellitus. Clinical Chemistry and Laboratory Medicine. 2011; 49(11): 1773-1782. doi.org/10.1515/cclm.2011.250.
6.    Subramanian S. Rajeswari S. Prasath GS. Antidiabetic, Antilipidemic and Antioxidant Nature of Tridax procumbens Studied in Alloxan-Induced Experimental Diabetes in Rats: a Biochemical Approach. Asian Journal of Research in Chemistry. 2011; 4(11): 1732-1738.
7.    Zhang BW. Li X. Sun WL. Xing Y. Xiu ZL. Zhuang CL. Dong YS. Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose. Journal of Agricultural and Food Chemistry. 2017; 65(38): 8319-8330. doi.org/10.1021/acs.jafc.7b02531.
8.    Yang J. Wang X. Zhang C. Ma L. Wei T. Zhao Y. Peng X. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chemistry. 2021; 347129056. doi.org/10.1016/j.foodchem.2021.129056.
9.    Poovitha S. Parani M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complementary and Alternative Medicine. 2016; 16(1): 1-8. doi.org/10.1186/s12906-016-1085-1
10.    Sachan AK. Rao CV. Sachan NK. In vitro studies on the inhibition of α-amylase and α-glucosidase by hydro-ethanolic extract of Pluchea lanceolata, Alhagi pseudalhagi, Caesalpinia bonduc. Pharmacognosy Research. 2019; 11(3). doi.org/ 10.4103/pr.pr_31_19.
11.    Muthukumaran P. Salomi S. Umamaheshwari R. In vitro antioxidant activity of Premna serratifolia Linn. Asian Journal of Research in Pharmaceutical Science. 2013; 3(1): 15-18.
12.    Pathade P. Ahire Y. Bairagi V. Abhang D. Antioxidants Therapy in Cognitive Dysfunction Associated with Diabetes Mellitus: An Overview. Research Journal of Pharmacology and Pharmacodynamics. 2011; 3(2): 39-44.
13.    Kamel FO. Magadmi RM. Hagras MM. Magadmi B. AlAhmad RA. Knowledge, attitude, and beliefs toward traditional herbal medicine use among diabetics in Jeddah Saudi Arabia. Complementary Therapies in Clinical Practice. 2017; 29207-212. doi.org/10.1016/j.ctcp.2017.10.007.
14.    Choudhury H. Pandey M. Hua CK. Mun CS. Jing JK. Kong L. Ern LY. Ashraf NA. Kit SW. Yee TS. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine. 2018; 8(3): 361-376. doi.org/10.1016/j.jtcme.2017.08.012.
15.    Wang Y. Zhao H. Wang Q. Zhou X. Lu X. Liu T. Zhan Y. Li P. Chinese herbal medicine in ameliorating diabetic kidney disease via activating autophagy. Journal of Diabetes Research. 2019; 2019. doi.org/10.1155/2019/9030893.
16.    Khalid H. Abdalla WE. Abdelgadir H. Opatz T. Efferth T. Gems from traditional north-African medicine: medicinal and aromatic plants from Sudan. Natural Products and Bioprospecting. 2012; 2(3): 92-103. doi.org/10.1007/s13659-012-0015-2.
17.    Van Wyk BE. A review of African medicinal and aromatic plants. Medicinal and Aromatic Plants of the World-Africa Volume 3. 2017;19-60. doi.org/10.1007/978-94-024-1120-1_2.
18.    Djahafi A. Taïbi K. Abderrahim LA. Aromatic and medicinal plants used in traditional medicine in the region of Tiaret, North West of Algeria. Mediterranean Botany. 2021;(42): 23. doi.org/10.5209/mbot.71465.
19.    Seethapathy GS. Ganesh D. Kumar JUS. Senthilkumar U. Newmaster SG. Ragupathy S. Shaanker RU. Ravikanth G. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. International Journal of Legal Medicine. 2015; 129(4): 693-700. doi.org/10.1007/s00414-014-1120-z.
20.    Grazina L. Amaral JS. Mafra I. Botanical origin authentication of dietary supplements by DNA‐based approaches. Comprehensive Reviews in Food Science and Food Safety. 2020; 19(3): 1080-1109. doi.org/10.1111/1541-4337.12551.
21.    Yuniarto A. Sukandar EY. Fidrianny I. Setiawan F. Ketut I. Antiobesity, Antidiabetic and Antioxidant Activities of Senna (Senna alexandrina Mill.) and Pomegranate (Punica granatum L.) Leaves Extracts and Its Fractions. International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR). 2018; 8(3): 18-24.
22.    Nayan SI. Chowdhury FI. Akter N. Rahman MM. Selim S. Saffoon N. Khan F. Subhan N. Hossain M. Ahmed KS. Leaf powder supplementation of Senna alexandrina ameliorates oxidative stress, inflammation, and hepatic steatosis in high-fat diet-fed obese rats. Plos One. 2021; 16(4): e0250261. doi.org/10.1371/journal.pone.0250261.
23.    Narasimhan R. Phytochemical screening and antioxidant studies in the Pulp extracts of Cucurbita maxima. Asian Journal of Pharmaceutical Research. 2016; 6(1).
24.    Abriyani E. Fikayuniar L. Screening phytochemical, antioxidant activity and vitamin C assay from bungo perak-perak (Begonia versicolar Irmsch) leaves. Asian Journal of Pharmaceutical Research. 2020; 10(3): 183-187.
25.    Yazid F. Hasanah NB. Hanafi M. Prasasty VD. Antidiabetic and antioxidant potential of Vernonia amygdalina leaf extract in alloxan-induced Sprague-dawley rats. OnLine Journal of Biological Sciences. 2020; 20(4): 190-200. doi.org/10.3844/ojbsci.2020.190.200.
26.    Tan MA. Lagamayo MWD. Alejandro GJD. An SSA. Anti-amyloidogenic and cyclooxygenase inhibitory activity of Guettarda speciosa. Molecules. 2019; 24(22): 4112. doi.org/10.3390/molecules24224112.
27.    Djordjevic TM. Šiler-Marinkovic SS. Dimitrijevic-Brankovic SI. Antioxidant activity and total phenolic content in some cereals and legumes. International Journal of Food Properties. 2011; 14(1): 175-184. doi.org/10.1080/10942910903160364.
28.    Shirazi OU. Khattak M. Shukri NAM. Nasyriq MN. Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. Journal of Pharmacognosy and Phytochemistry. 2014; 3(3): 104-108.
29.    Yazid F. Anggreni NG. Fadhil N. Prasasty VD. Potential In Vitro and In Vivo Antioxidant Activities from Piper Crocatum and Persea Americana Leaf Extracts. Biomedical and Pharmacology Journal. 2019; 12(2): 661-667. doi.org/10.13005/bpj/1686.
30.    Yazid F. Salim SO. Rahmadika FD. Rosmalena R. Artanti N, Sundowo A. Prasasty VD. Antidiabetic effects of Tithonia diversifolia and Malus domestica leaf extracts in alloxan-induced Sprague Dawley rats. Systematic Review in Pharmacy. 2021;12(1): 1630-8.
31.    Bindes MMM. Cardoso VL. Reis MHM.  Boffito DC. Maximisation of the polyphenols extraction yield from green tea leaves and sequential clarification. Journal of Food Engineering. 2019; 24197-104. doi.org/10.1016/j.jfoodeng.2018.08.006.
32.    López-Perea P. Guzmán-Ortiz F. Román-Gutiérrez A. Castro-Rosas J. Gómez-Aldapa C. Rodríguez-Marín M. Falfán-Cortés R. González-Olivares L. Torruco-Uco J. Bioactive compounds and antioxidant activity of wheat bran and barley husk in the extracts with different polarity. International Journal of Food Properties. 2019; 22(1): 646-658. doi.org/10.1080/10942912.2019.1600543.
33.    Kobus-Cisowska J. Szczepaniak O. Szymanowska-Powałowska D. Piechocka J. Szulc P. Dziedziński M. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Ciência Rural. 2019; 50. doi.org/10.1590/0103-8478cr20190371. 
34.    Thouri A. Chahdoura HEL. Arem A. Hichri AO. Hassin RB. Achour L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complementary and Alternative Medicine. 2017; 17(1): 1-10. 10.1186/s12906-017-1751-y.
35.    Alachaher F. Dali S. Dida N. Krouf D. Comparison of phytochemical and antioxidant properties of extracts from flaxseed (Linum usitatissimum) using different solvents. International Food Research Journal. 2018; 25(1).
36.    Al-Dabbagh B. Elhaty IAAL. Sakkaf REL. Awady R. Ashraf SS. Amin A. Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta. BMC Complementary and Alternative Medicine. 2018; 18(1): 1-12. doi.org/10.1186/s12906-018-2285-7.
37.    Wahyudi LD. Ratnadewi AAI. Siswoyo TA. Potential antioxidant and antidiabetic activities of kayu kuning (Arcangelisia flava). Agriculture and Agricultural Science Procedia. 2016; 9396-402. doi.org/10.1016/j.aaspro.2016.02.155.
38.    Kumar DL. Rao K. Bindu M. Kumar DS. David B. Alpha-Glucosidase Inhibitory Activities of Wrightia tinctoria Roxb and Schrebera swietenoides Roxb Bark Extract. Research Journal of Pharmacology and Pharmacodynamics. 2011; 3(1): 22-24.
39.    Sajid M. Raksha G. Kumar N. In vitro Alpha glucosidase and Aldolase reductase Inhibitory activity of Holoptelea integrifolia. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(2): 35-40.
40.    Wadkar K. Magdum C. Evaluation of total phenolic content, flavonoid content and antioxidant activity of stem bark of Careya arborea Roxb. Research Journal of Pharmacognosy and Phytochemistry. 2010; 2(1): 49-51.
41.    Patel VKK. Patel C. Patel HU. Patel C. Vitamins, Minerals and Carotenoids as a Antioxidants. Asian Journal of Research in Chemistry. 2010; 3(2): 255-260.
42.    Guemari F. Laouini SE. Rebiai A. Bouafia A. Phytochemical screening and Identification of Polyphenols, Evaluation of Antioxidant activity and study of Biological properties of extract Silybum marianum (L.). Asian Journal of Research in Chemistry. 2020; 13(3): 190-197.
43.    Gerschenson LN. Rojas AM. Fissore EN. in Nutraceutical and functional food components 49-126 (Elsevier, 2022).
44.    Yu G. Zheng QS. Li GF. Similarities and differences in gastrointestinal physiology between neonates and adults: a physiologically based pharmacokinetic modeling perspective. The AAPS Journal. 2014;16(6):1162-6. doi.org/10.1208/s12248-014-9652-1.
45.    Hu L. Chen NN. Hu Q. Yang C. Yang QS. Wang FF. An unusual piceatannol dimer from Rheum austral D. Don with antioxidant activity. Molecules. 2014; 19(8): 11453-11464. doi.org/10.3390/molecules190811453.
46.    Xie J. Zeng Z. Tao Z. Zhang Q. Study on the Interaction and Properties of Cucurbit [8] uril with Oroxin B. Chemical Research in Chinese Universities. 2020; 36(5): 804-809. doi.org/10.1007/s40242-020-0005-6.
47.    Babu KS. Tiwari AK. Srinivas PV. Ali AZ. Raju BC. Rao JM. Yeast and mammalian α-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall. ex Meisson. Bioorganic and Medicinal Chemistry Letters. 2004; 14(14): 3841-3845. doi.org/10.1016/j.bmcl.2004.04.062.
48.    Bursal E. Aras A. Kılıç Ö. Buldurun K. Chemical constituent and radical scavenging antioxidant activity of Anthemis kotschyana Boiss. Natural Product Research. 2020;1-4. doi.org/10.1080/14786419.2020.1723089.
49.    Dewi YN. Sukmawati AA. Mohamad R. Multiple spectroscopic fingerprinting platforms for rapid characterization of α-glucosidase inhibitors and antioxidants from some commonly consumed Indonesian vegetables and spices. Journal of Food Measurement and Characterization. 2020; 14(3): 1699-1707. doi.org/10.1007/s11694-020-00418-z.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available