Author(s): Sugiharto, Anjar Tri Wibowo, Ummi Zubaidah, Annisa Dwi Savitri, Muhammad Sidqon Faukib, Navy Safira Salsabila, Yosephine Sri Wulan Manuhara

Email(s): sugiharto@fst.unair.ac.id , yosephine-s-w-m@fst.unair.ac.id

DOI: 10.52711/0974-360X.2022.00984   

Address: Sugiharto1,2*, Anjar Tri Wibowo1,2, Ummi Zubaidah1, Annisa Dwi Savitri1, Muhammad Sidqon Faukib1, Navy Safira Salsabila1, Yosephine Sri Wulan Manuhara1,2*
1Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia.
2Biotechnology of Tropical Medicinal Plants Research Group, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
The objective of our research was to the evaluated biological activities of G. procumbens leaves methanol extract (GLME) for the hepatoprotective against cadmium (Cd) toxicity in mice. Research was performed using twenty five healthy male mice, which were grouped into five treatments: P1 (control), P2 (Cd-100mg/L), P3 (GLME-100mg/L+Cd-100mg/L), P4 (GLME-200mg/L+Cd-100mg/L), P5 (GLME-300mg/L+Cd-100mg/L). The results showed GLME contain phenolic and flavonoids compound by total phenolic content (TPC) and total flavonoid content (TFC) assay, they were strongly correlated with antioxidant activities. In this study, it was also known that Cd exposure increasing malondialdehyde (MDA) level and decreasing of superoxide dismutase (SOD) and catalase (CAT) activities in liver homogenates compared to control significantly. This is in line with a decreased in the number of normal cells and slightly an increased in damage cells in the histological hepatic cells. Administration of GLME can prevent liver cell damage due to Cd treatment by increasing the number of histological normal cells and the activities of SOD and CAT enzyme and reducing the level of MDA in liver homogenates. The best treatment of GLME was 100mg/L.


Cite this article:
Sugiharto, Anjar Tri Wibowo, Ummi Zubaidah, Annisa Dwi Savitri, Muhammad Sidqon Faukib, Navy Safira Salsabila, Yosephine Sri Wulan Manuhara. Biological Properties of Gynura procumbens Leaves Extract to MDA Levels and Antioxidant Activities in Liver of Mice. Research Journal of Pharmacy and Technology 2022; 15(12):5829-4. doi: 10.52711/0974-360X.2022.00984

Cite(Electronic):
Sugiharto, Anjar Tri Wibowo, Ummi Zubaidah, Annisa Dwi Savitri, Muhammad Sidqon Faukib, Navy Safira Salsabila, Yosephine Sri Wulan Manuhara. Biological Properties of Gynura procumbens Leaves Extract to MDA Levels and Antioxidant Activities in Liver of Mice. Research Journal of Pharmacy and Technology 2022; 15(12):5829-4. doi: 10.52711/0974-360X.2022.00984   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-78


REFERENCES:
1.    Rahimzadeh MR. Rahimzadeh MR. Kazemi S. Moghadamnia AA. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017; 8(3): 135–145. doi:10.22088/cjim.8.3.135
2.    Seif MM. Madboli AN. Marrez DA. Aboulthana WMK. Hepato-Renal protective effects of Egyptian Purslane extract against experimental cadmium toxicity in rats with special emphasis on the functional and histopathological changes. Toxicol. Reports 2019; 6: 625–631. doi:10.1016/j.toxrep.2019.06.013
3.    Tchounwou PB. Yedjou CG. Patlolla AK. Sutton DJ. Heavy metals toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012; 101: 133–164. doi:10.1007/978-3-7643-8340-4
4.    Candra YA. et al. Concentrations of metals in mantis shrimp Harpiosquilla harpax (de Haan, 1844) collected from the eastern region of Java Sea Indonesia, and potential risks to human health. Reg. Stud. Mar. Sci. 2019; 26: 100507. doi:10.1016/j.rsma.2019.100507
5.    Bawuro AA. Voegborlo RB. Adimado AA. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018; ID. 1854892: 1-7. doi:10.1155/2018/1854892
6.    Patil PM. Durugkar NJ. Kakolkar PP. Chaudhari PD. Bioaccumulation of cadmium chloride in the fresh water fish cattle-cattle. Res. J. Pharm. Technol. 2011; 4(1): 121–123.
7.    Kerek E. Hassanin M. Prenner EJ. Inorganic mercury and cadmium induce rigidity in eukaryotic lipid extracts while mercury also ruptures red blood cells. BBA - Biomembranes. 2018; 1860: 710–717. doi:10.1016/j.bbamem.2017.12.014
8.    Andjelkovic M. et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int. J. Environ. Res. Public Health. 2019; 16(2): 1-21. doi:10.3390/ijerph16020274
9.    Li S. et al. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015; 16(11): 26087–26124. doi:10.3390/ijms161125942
10.    Sugiharto et al. The comparison toxicity effects of lead and cadmium exposure on hematological parameters and organs of mice. Ecol. Environ. Conserv. 2020; 26(4): 1842–1846.
11.    Lobo V. Patil A. Phatak A. Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010; 4(8): 118–126. doi:10.4103/0973-7847.70902
12.    Widjiati et al. Histopathologic changes in liver tissue from cadmium intoxicated mice and treated with curcumin during pregnancy. Res. J. Pharm. Technol. 2018; 11(3): 863–866. doi:10.5958/0974-360X.2018.00160.9
13.    Chakraborty P. Kumar S. Dutta D. Gupta V. Role of antioxidants in common health diseases. Res. J. Pharm. Tech 2009; 2(2): 238–244.
14.    Anantharaju PG. Gowda PC. Vimalambike MG. Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016; 15(1): 1–16. doi:10.1186/s12937-016-0217-2
15.    Carocho M. & Ferreira ICR. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013; 51(1): 15–25. doi:10.1016/j.fct.2012.09.021
16.    Kumar A. Khushboo Pandey R. Sharma B. Modulation of superoxide dismutase activity by mercury, lead, and arsenic. Biol. Trace Elem. Res. 2020; 196(2): 654–661. doi:10.1007/s12011-019-01957-3
17.    Yam MF. Sadikun A. Asmawi MZ. Rosidah. Antioxidant potential of Gynura procumbens. Pharm. Biol. 2008; 46(9): 616–625. doi:10.1080/13880200802179642
18.    Tan HL. Chan KG. Pusparajah P. Lee LH. Goh BH. Gynura procumbens: An overview of the biological activities. Front. Pharmacol. 2016; 7(52): 1-14. doi:10.3389/fphar.2016.00052
19.    Marref SE. Benkiki N. Melakhessou MA. In vitro antioxidant activity, total phenolics and flavonoids contents of Gladiolus segetum extracts. Res. J. Pharm. Technol. 2018; 11(11): 5017–5023. doi:10.5958/0974-360X.2018.00915.0
20.    Prabha SB. Rao M. Kumar MR. Evaluation of in vitro antioxidant, antibacterial and anticancer activities of leaf extracts of Cleome rutidosperma. Res. J. Pharm. Technol. 2017; 10(8): 2492–2496.doi:10.5958/0974-360X.2017.00440.1
21.    Kaewseejan N. Sutthikhum V. Siriamornpun S. Potential of Gynura procumbens leaves as source of flavonoid-enriched fractions with enhanced antioxidant capacity. J. Funct. Foods 2015; 12: 120–128.doi:10.1016/j.jff.2014.11.001
22.    Li JE. Wang WJ. Zheng GD. Li LY. Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation. Int. J. Biol. Macromol. 2017; 95: 719–724. doi:10.1016/j.ijbiomac.2016.11.113
23.    Mou KM. & Dash PR. A comprehensive review on Gynura procumbens leaves. Int. J. Pharmacognosy. 2016; 3(4): 167–174. doi:10.13040/IJPSR.0975-8232.IJP.3(4).167-74
24.    Sugiharto et al. Antioxidant activities of curcumin to MDA blood serum concentration and lead levels in liver of mice. Malaysian J. Sci. 2019; 38(3): 21–29. doi:10.22452/mjs.sp2019no3.3
25.    Ashraf K. Halim H. Lim SM. Ramasamy K. Sultan S. In vitro antioxidant, antimicrobial and antiproliferative studies of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea. Saudi J. Biol. Sci. 2020; 27(1): 417–432. doi:10.1016/j.sjbs.2019.11.003
26.    Parimi R. & Pravallika KE. Studies on phytochemical screening, total phenolic content and in vitro antioxidant activity of different extracts of Euphorbia thymifolia roots. Res. J. Pharm. Technol. 2017; 10(2): 551-556. doi:10.5958/0974-360x.2017.00110.x
27.    Said S. et al. Phenolic content, HPLC analysis and antioxidant activity extract from Tamarix gallica and Tamarix articulata growing in southeast of Algeria. Res. J. Pharm. Technol. 2018; 11(9): 3826–3832. doi:10.5958/0974-360X.2018.00701.1
28.    Khalesi MK. Abedi Z. Behrouzi S. Eskandari SK. Haematological, blood biochemical and histopathological effects of sublethal cadmium and lead concentrations in common carp. Bulg. J. Vet. Med. 2017; 20(2): 141–150. doi:10.15547/bjvm.965
29.    Jwad JM. Study the effect of cadmium chloride on the histological structure and biochemical enzymes in male white mice. Res. J. Pharm. Technol. 2019; 12(1): 99–102. doi:10.5958/0974-360X.2019.00019.2
30.    Dardouri K. et al. Combined effects of Cd and Hg on liver and kidney histology and function in Wistar rats. J. Agric. Chem. Environ. 2016; 5(4): 159–169. doi:10.4236/jacen.2016.54017
31.    Ashrafizadeh M. Rafiei H. Ahmadi Z. Histological changes in the liver and biochemical parameters of chickens treated with lead acetate II. Iran. J. Toxicol. 2018; 12(6): 1–5. doi:10.32598/ijt.12.6.540.2
32.    Ahirwar B. & Ahirwar D. Antioxidant and hepatoprotective activity of root extract of Baliospermum montanum (Willd) Muell Arg. Res. J. Pharm. Technol. 2019; 12(6): 2705-2711. doi:10.5958/0974-360x.2019.00452.9
33.    Kumar CH. Ramesh A. Mohan KG. Hepatoprotective and antioxidant effects of Mucuna pruriens against acetaminophen-induced hepatotoxicity in albino Wistar rats. Res. J. Pharm. Technol. 2014; 7(1): 70–73.
34.    Khare P. Kishore K. Sharma DK. Catalase and superoxide dismutase (SOD) activity in Swiss albino mice treated with ethanolic leaf extract of Madhuca longifolia. Res. J. Pharm. Technol. 2019; 12(9): 4434–4437. doi:10.5958/0974-360X.2019.00764.9
35.    Jurczuk M. et al.. Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem. Toxicol. 2004; 42(3): 429–438. doi:10.1016/j.fct.2003.10.005
36.    Kim KS. et al. Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food Chem. Toxicol. 2018; 114: 34–40. doi:10.1016/j.fct.2018.02.007
37.    Sheng Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014; 114(7): 3854–3918. doi:10.1021/cr4005296

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available