Author(s): Theresia Indah Budhy, Retno Pudji Rahayu, Fata Ariestia Prathama


DOI: 10.52711/0974-360X.2022.00971   

Address: Theresia Indah Budhy1*, Retno Pudji Rahayu1, Fata Ariestia Prathama2
1Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022

Background: Hyperglycemia can cause adverse effects in the oral cavity, one of which is inhibiting wound healing. Chronic hyperglycemia reduces the expression and distribution of growth factors, such as fibroblast growth factor-2 (FGF-2), a significant growth factor in angiogenesis. The disruption of wound healing may lead to chronic wounds to further infection. Routine oral wound treatment using topical steroid ointment is considered ineffective in hyperglycemic individuals due to its anti-angiogenic properties. Anadara granosa shell nanoparticles can induce the production of numerous growth factors such as FGF-2 and augment angiogenesis. Objective: To determine the potential of giving Anadara granosa shell nanoparticles to increase FGF-2 in chronic inflammatory wounds with hyperglycemia conditions. Discussion: Angiogenesis supports and intersects with other ongoing proliferative activities and with the remodeling phase. FGF-2 helps the proliferation of endothelial cells and the arrangement of endothelial cells to form a tube to help angiogenesis. Hyperglycemia is directly associated with a significant reduction in FGF-2-induced angiogenesis in vivo. Biogenic CaCO3 nanoparticles made from Anadara granosa have shown promising potential to increase FGF-2 by activating NF-?B signaling. Conclusion: Anadara granosa shell nanoparticles have the potential to increase the expression of fibroblast growth factor-2 (FGF-2) in chronic inflammatory wounds with hyperglycemia conditions.

Cite this article:
Theresia Indah Budhy, Retno Pudji Rahayu, Fata Ariestia Prathama. Potential of Anadara granosa Nanoparticles to improve the Expression of the Fibroblast Growth Factor-2 (FGF-2) in Chronic wound of Hyperglycemia conditions. Research Journal of Pharmacy and Technology 2022; 15(12):5757-0. doi: 10.52711/0974-360X.2022.00971

Theresia Indah Budhy, Retno Pudji Rahayu, Fata Ariestia Prathama. Potential of Anadara granosa Nanoparticles to improve the Expression of the Fibroblast Growth Factor-2 (FGF-2) in Chronic wound of Hyperglycemia conditions. Research Journal of Pharmacy and Technology 2022; 15(12):5757-0. doi: 10.52711/0974-360X.2022.00971   Available on:

1.    Kharroubi AT. Diabetes mellitus: The Epidemic of The Century. World Journal of Diabetes. 2015 Jun; 6(6): 850-867. doi:10.4239/wjd.v6.i6.850.
2.    Tripathi R, Tripathi K. Management of Non-Healing Oral Ulcer in Diabetic Patient Using Topical Application of Epidermal Growth Factor: A Case Report. Scholars Academic Journal of Biosciences. 2015; 3(8): 640–643.
3.    Larger E, Marre M, Corvol P, Gasc J-M. Hyperglycemia-Induced Defects in Angiogenesis in the Chicken Chorioallantoic Membrane Model. Methods in Molecular Biology. 2004; 53(3): 752–61. doi:10.2337/diabetes.53.3.752.
4.    Lewis M, Wilson N. Oral ulceration: causes and management. The Pharmaceutical Journal. 2019 Mar; 302: 1–13.doi:10.1211/PJ.2019.20205786.
5.    Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research. 2009; 37(5): 1528-42. doi:10.1177/147323000903700531.
6.    Iqbal A, Jan A, Wajid MA, Tariq S. Management of Chronic Non-healing Wounds by Hirudotherapy. World Journal of Plastic Surgery. 2017; 6(1):9–17.
7.    Mortazavi H, Safi Y, Baharvand M, Rahmani S. Diagnostic Features of Common Oral Ulcerative Lesions: An Updated Decision Tree. International Journal of Dentistry. 2016; 2016. doi:10.1155/2016/7278925.
8.    Veritti D, Perissin L, Zorzet S, Lanzetta P. The effect of triamcinolone acetonide, sodium hyaluronate, and chondroitin sulfate on human endothelial cells: An in vitro study. European Journal of Ophthalmology. 2011; 21Suppl 6: S75–9. doi:10.5301/EJO.2010.6060.
9.    Chu C et al. Nanoparticles combined with growth factors: Recent progress and applications. RSC Advances. 2016; 6(93): 90856–72. doi:10.1039/C6RA13636B
10.    Fianza Rezkita, Kadek G. P. Wibawa, Alexander P. Nugraha. Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research Journal of Pharmacy and Technology. 2020; 13(2):1039-1042. doi: 10.5958/0974-360X.2020.00191.2
11.    Widyastuti W, Rubianto M, Soetjipto. Induction of Angiogenesis Process in Mandible Using Anadara granosa Shell Graft (Experimental Laboratory Study on Rattus norvegicus). IOP Conference Series Earth Environmental Science. 2019; 217(1): 012033.doi:10.1088/1755-1315/217/1/012033.
12.    Robson MC, Steed DL, Franz MG. Wound healing: biologic features and approaches to maximum healing trajectories. Current Problem in Surgery. 2001; 38(2): 72–141.  doi:10.1067/msg.2001.111167.
13.    Broughton G, Janis JE, Attinger CE. Wound healing: An overview. Plastic Reconstructive Surgery. 2006; 117 (7 SUPPL.): 1–32. doi:10.1097/01.prs.0000222562.60260.f9.
14.    Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean Journal of Physiology and Pharmacology. 2014; 18(1): 1–14.doi:10.4196/kjpp.2014.18.1.1.
15.    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008; 453(7193): 314–21. doi:10.1038/nature07039.
16.    Yun YR et al. Fibroblast growth factors: Biology, function, and application for tissue regeneration. Journal of Tissue Engineering. 2010;1(1):1–18. doi:10.4061/2010/218142.
17.    Nagayasu-Tanaka T et al. Action mechanism of fibroblast growth factor-2 (FGF-2) in the promotion of periodontal regeneration in beagle dogs. PLoS One. 2015; 10(6): 1–19. doi:10.1371/journal.pone.0131870.
18.    Praja F, Rusliadi, Mulyadi. Growth rates of shellfish blood (Anadara granosa) at different stocking density. Student Fishery and Marine Science Faculty Riau University. 2014;1(1):821–2.
19.    Nurjanah, Zulhamsyah, Kustiyariyah. Kandungan mineral dan proksimat kerang darah (Anadara granosa) yang Diambil dari Kabupaten Boalemo, Gorontalo. 2005;VIII(2):15–24.
20.    Saryati, Sukaryo SG, Handayani A, Untoro P, Sugeng B. Hidrosiapatit berpori dari kulit kerang. J Sains Mater Indones. 2012;13(4):31–5.doi: 10.17146/jsmi.2012.13.4.4753
21.    Kamba AS, Ismail M, Azmi Tengku Ibrahim T, Zakaria ZAB. Biocompatibility of bio based calcium carbonate nanocrystals aragonite polymorph on nih 3T3 fibroblast cell line. African J Tradit Complement Altern Med. 2014;11(4):31–8.
22.    Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–65.
23.    Kanaya S, Nemoto E, Sakisaka Y, Shimauchi H. Calcium-mediated increased expression of fibroblast growth factor-2 acts through NF-κB and PGE2/EP4 receptor signaling pathways in cementoblasts. Bone. 2013;56(2):398–405. Available from:
24.    Hermanto E, Sari RP, Imaniar ACD, Anggoro K. Grafting effectiveness of Anadara granosa shell combined with sardinella longiseps gel on the number of osteoblast-osteoclast cells. Dent J (Majalah Kedokt Gigi). 2018;50(3):138.
25.    Finetti F, Donnini S, Giachetti A, Morbidelli L, Ziche M. Prostaglandin E2 primes the angiogenic switch via a synergic interaction with the fibroblast growth factor-2 pathway. Circ Res. 2009;105(7):657–66.
26.    Chilelli NC, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible formicrovascular complications in diabetes: A"glycoxidation-centric" point of view. Nutr Metab Cardiovasc Dis [Internet]. 2013;23(10):913–9. Available from:
27.    Puddu A, Sanguineti R, Maggi D, Nicolò M, Traverso CE, Cordera R, et al. Advanced Glycation End-Products and Hyperglycemia Increase Angiopoietin-2 Production by Impairing Angiopoietin-1-Tie-2 System. J Diabetes Res. 2019;2019.
28.    Van Putte L, De Schrijver S, Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic review. Scars, Burn Heal. 2016; 2: 205951311667682.
29.    Sari RP, Sudjarwo SA, Rahayu RP, Prananingrum W, Revianti S, Kurniawan H, et al. The effects of Anadara granosa shell-Stichopus hermanni on bFGF expressions and blood vessel counts in the bone defect healing process of Wistar rats. Dent J (Majalah Kedokt Gigi). 2017;50(4):194.
30.    Krock BL, Skuli N, Simon MC. Hypoxia-Induced Angiogenesis: Good and Evil. Genes and Cancer. 2011;2(12):1117–33.
31.    Seo HR, Jeong HE, Joo HJ, Choi SC, Park CY, Kim JH, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6(6):1–11. Available from:
32.    Mailafiya MM, Abubakar K, Danmaigoro A, Chiroma SM, Rahim EBA, Moklas MAM, et al. Cockle shell-derived calcium carbonate (aragonite) nanoparticles: A dynamite to nanomedicine. Appl Sci. 2019;9(14):1–25.
33.    Biradar S, Ravichandran P, Gopikrishnan R, Goornavar V, Hall JC, Ramesh V, et al. Calcium carbonate nanoparticles: Synthesis, characterization and biocompatibility. J Nanosci Nanotechnol. 2011;11(8):6868–74.
34.    Kawai K, Larson BJ, Ishise H, Carre AL, Nishimoto S, Longaker M, et al. Calcium-based nanoparticles accelerate skin wound healing. PLoS One. 2011;6(11).
35.    Johnson A, Francis M, DiPietro LA. Differential Apoptosis in Mucosal and Dermal Wound Healing. Adv Wound Care. 2014; 3(12): 751–61.
36.    DiPietro LA, Schrementi M. Oral Mucosal Healing. Wound Heal Stem Cells Repair Restorations, Basic Clin Asp. 2018; 125–32.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available