Author(s): Maria Apriliani Gani, Ahmad Dzulfikri Nurhan, Fedik Abdul Rantam, Chrismawan Ardianto, Junaidi Khotib

Email(s): junaidi-k@ff.unair.ac.id

DOI: 10.52711/0974-360X.2022.00948   

Address: Maria Apriliani Gani1, Ahmad Dzulfikri Nurhan2, Fedik Abdul Rantam3, Chrismawan Ardianto2, Junaidi Khotib2*
1Doctoral Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
2Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
3Laboratory of Virology and Immunology, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
Osteoporosis is a systemic skeletal disease characterized by low bone mass, that can result in fracture when injury, for example, due to a traffic accident. This study aimed to identify secondary metabolites from Zingiber officinale that potentially inhibit cathepsin K, a critical enzyme that caused osteoporosis. In this study, a molecular docking of 102 bioactive compounds from Zingiber officinale against cathepsin K (PDB ID: 4X6I) was conducted. Ligand preparation was performed using JChem and Schrödinger’s software, and virtual protein was elucidated using AutoDockTools version 1.5.6. Cocrystal ligand was carried out as a positive control ligand. Pharmacokinetics of the compounds was predicted with SwissADME online tool. Based on the results, nine compounds had good binding affinity against cathepsin K. The compounds were shogasulfonic acid C, (-)-beta-sitosterol, shogasulfonic acid D, shogasulfonic acid B, shogasulfonic acid A, isogingerenone B, (S)-8-gingerol, gingerenone A, and hexahydrocurcumin, with binding affinities of -7.2, -7.0, -6.9, -6.8, -6.8, -6.7, -6.7, -6.6, and -6.4 kcal mol-1, respectively. Most compounds had great pharmacokinetic profiles and also drug-likeness properties. In conclusion, bioactive compounds from Zingiber officinale are potentially used as anti-osteoporosis agents targeting cathepsin K. However, in vitro and in vivo studies are needed to prove the anti-osteoporosis activity of these compounds.


Cite this article:
Maria Apriliani Gani, Ahmad Dzulfikri Nurhan, Fedik Abdul Rantam, Chrismawan Ardianto, Junaidi Khotib. Potential Anti-osteoporosis compounds from Zingiber officinale: A Molecular Docking and Pharmacokinetics Prediction. Research Journal of Pharmacy and Technology 2022; 15(12):5617-5. doi: 10.52711/0974-360X.2022.00948

Cite(Electronic):
Maria Apriliani Gani, Ahmad Dzulfikri Nurhan, Fedik Abdul Rantam, Chrismawan Ardianto, Junaidi Khotib. Potential Anti-osteoporosis compounds from Zingiber officinale: A Molecular Docking and Pharmacokinetics Prediction. Research Journal of Pharmacy and Technology 2022; 15(12):5617-5. doi: 10.52711/0974-360X.2022.00948   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-42


REFERENCES:
1.    Coughlan T, Dockery F. Osteoporosis and fracture risk in older people. Clinical Medicine, Journal of the Royal College of Physicians of London. 2014;14(2):187-191. doi:10.7861/clinmedicine.14-2-187
2.    World Health Organization Study Group. Assessment of fracture risk 5 and its application to screening for postmenopausal osteoporosis. World Health Organization Technical Report Series. 1994;843:1-129.
3.    Sakat BT, Sakhare RB, Suryvanshi UC, Kore PS, Mohite SK, Magdum CS. Osteoporosis: The Brittle Bone. Asian Journal of Pharmaceutical Research. 2018;8(1):39. doi:10.5958/2231-5691.2018.00008.4
4.    World Health Organization. Who Scientific Group on the Assessment of Osteoporosis At Primary Health. 2008. Available on http://www.who.int/chp/topics/Osteoporosis.pdf
5.    Sozen T, Ozisik L, Calik Basaran N. An overview and management of osteoporosis. European Journal of Rheumatology. 2017;4(1):46-56. doi:10.5152/eurjrheum.2016.048
6.    Srivastava A, Mishra A, Rai AK. Nsaids-alendronate based prodrug for bone specific drug targeting. Research Journal of Pharmacy and Technology. 2020;13(7):3520-3523. doi:10.5958/0974-360X.2020.00623.X
7.    Papapetrou PD. Bisphosphonate-associated adverse events. Hormones. 2009;8(2):96-110.
8.    Rosini S, Rosini S, Bertoldi I, Frediani B. Understanding bisphosphonates and osteonecrosis of the jaw: Uses and risks. European Review for Medical and Pharmacological Sciences. 2015;19(17):3309-3317.
9.    Khotib J, Gani MA, Budiatin AS, Lestari MLAD, Rahadiansyah E, Ardianto C. Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals. 2021;14(7):615. doi:10.3390/ph14070615
10.    Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: Its skeletal actions and role as a therapeutic target in osteoporosis. Nature Reviews Rheumatology. 2011;7(8):447-456. doi:10.1038/nrrheum.2011.77
11.    Duong LT, Leung AT, Langdahl B. Cathepsin K Inhibition: A New Mechanism for the Treatment of Osteoporosis. Calcified Tissue International. 2016;98(4):381-397. doi:10.1007/s00223-015-0051-0
12.    Setiawatie EM, Sari DS, Wahyudadi BS, Fitria E, Kurnia S, Bargowo L, Gani MA. Viability of Nigella sativa Toothpaste with SLS Compared Non-SLS on Fibroblast Cell Culture. Journal of International Dental and Medical Research. 2021;12(2):525-528.
13.    Liu C, Ma R, Wang L, Zhu R, Liu H, Guo Y, Zhao B, Zhao S, Tang J, Li Y, Niu J, Fu M, Zhang D, Gao S. Rehmanniae Radix in osteoporosis: A review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. Journal of Ethnopharmacology. 2017;198:351-362. doi:10.1016/j.jep.2017.01.021
14.    Abdel-Naim AB, Alghamdi AA, Algandaby MM, Al-Abbasi FA, Al-Abd AM, Abdallah HM, El-Halawany AM, Hattori M. Phenolics isolated from aframomum meleguta enhance proliferation and ossification markers in bone cells. Molecules. 2017;22(9). doi:10.3390/molecules22091467
15.    Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology. 2008;46(2):409-420. doi:10.1016/j.fct.2007.09.085
16.    Ghasemzadeh A, Jaafar HZE, Rahmat A. Antioxidant Activities, Total Phenolics and Flavonoids Content in Two Varieties of Malaysia Young Ginger (Zingiber officinale Roscoe). Molecules. 2010;15:4324-4333. doi:10.3390/molecules15064324
17.    Pagano E, Souto EB, Durazzo A, Sharifi-Rad J, Lucarini M, Souto SB, Salehi B, Zam W, Montanaro V, Lucariello G, Izzo AA, Santini A, Romano B. Ginger (Zingiber officinale Roscoe) as a nutraceutical: Focus on the metabolic, analgesic, and antiinflammatory effects. Phytotherapy Research. 2021;35(5):2403-2417. doi:10.1002/ptr.6964
18.    Sherif MH, Abas ASM, Zaitoun LA. Ginger extract protect iodinated contrast media nephrotoxicity in rats through modulation of oxidative stress, cystain C, NGAL and TNF α. Research Journal of Pharmacy and Technology. 2018;11(12):5439-5448. doi:10.5958/0974-360X.2018.00992.7
19.    Bhowmik D, Tripathi K, Chandira M, Sampath Kumar K. Zingiber officinale the Herbal and Traditional Medicine and Its Therapeutically Importance. Research Journal of Pharmacognosy and Phytochemistry. 2010;2(2):102-110.
20.    Gani MA, Nurhan AD, Maulana S, Siswodihardjo, Shinta DW, Khotib J. Structure based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus 2. Journal of Advanced Pharmaceutical Technology & Research. 2021;12(2):120-126. doi:10.4103/japtr.JAPTR_88_21
21.    Nurhan AD, Gani MA, Maulana S, Siswandono S, Ardianto C, Khotib J. Molecular Docking Studies for Protein-Targeted Drug Development in SARS-CoV-2. Letters in Drug Design & Discovery. 2021;18. doi:10.2174/1570180818666210512021619
22.    Gani MA, Nurhan AD, Budiatin AS, Siswodihardjo S, Khotib J. Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins. Journal of Basic and Clinical Physiology and Pharmacology. 2021;32(4):373–377. doi:10.1515/jbcpp-2020-0403
23.    Nurhan AD, Gani MA, Budiatin AS, Siswodihardjo S, Khotib J. Molecular docking studies of Nigella sativa L and Curcuma xanthorrhiza Roxb secondary metabolites against histamine N-methyltransferase with their ADMET prediction. Journal of Basic and Clinical Physiology and Pharmacology. 2021;32(4):795-802. doi:10.1515/jbcpp-2020-0425
24.    Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Annals of the New York Academy of Sciences. 2017;1398(1):83-98. doi:10.1111/nyas.13375
25.    Ebrahimzadeh Attari V, Malek Mahdavi A, Javadivala Z, Mahluji S, Zununi Vahed S, Ostadrahimi A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytotherapy Research. 2018;32(4):577-585. doi:10.1002/ptr.5986
26.    Dessai P, Mhaskar GM. Formulation and evaluation of Ginger Officinale emulgel. Research Journal of Pharmacy and Technology. 2019;12(4):1559-1565. doi:10.5958/0974-360X.2019.00258.0
27.    de Lima RMT, dos Reis AC, de Menezes AAPM, Santos JV de O, Filho JWG de O, Ferreira JR de O, de Alencar MVOB, da Mata AMOF, Khan IN, Islam A, Uddin SJ, Ali ES, Islam MT, Tripathi S, Mishra SK, Mubarak MS, Melo-Cavalcante AA de C. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytotherapy Research. 2018;32(10):1885-1907. doi:10.1002/ptr.6134
28.    Haniadka R, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food and Function. 2013;4(6):845-855. doi:10.1039/c3fo30337c
29.    Lete I, Alluέ J. The Effectiveness of Ginger in the Prevention of Nausea and Vomiting during Pregnancy and Chemotherapy. Integrative Medicine Insights. 2016;11:IMI.S36273. doi:10.4137/IMI.S36273
30.    Swathy S, Roy A, Rajeshkumar S. Anti-inflammatory activity of ginger oleoresin mediated silver nanoparticles. Research Journal of Pharmacy and Technology. 2020;13(10):4591-4593. doi:10.5958/0974-360X.2020.00808.2
31.    Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li H bin. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):1-21. doi:10.3390/foods8060185
32.    Budiatin AS, Samirah, Gani MA, Nilamsari WP, Ardianto C, Khotib J. The characterization of bovine bone-derived hydroxyapatite isolated using novel non-hazardous method. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2020;45:49-56. doi:10.4028/www.scientific.net/jbbbe.45.49
33.    Budiatin AS, Gani MA, Samirah, Ardianto C, Raharjanti AM, Septiani I, Putri NPKP, Khotib J. Bovine Hydroxyapatite-Based Bone Scaffold with Gentamicin Accelerates Vascularization and Remodeling of Bone Defect. International Journal of Biomaterials. 2021;2021:1-7. doi:10.1155/2021/5560891
34.    Budiatin AS, Gani MA, Ardianto C, Samirah, Pattah SYD, Mubarokah F, Khotib J. The impact of glutaraldehyde on the characteristics of bovine hydroxyapatite-gelatin based bone scaffold as gentamicin delivery system. Journal of Basic and Clinical Physiology and Pharmacology. 2021;32(4):687–691.
35.    Khotib J, Utami NW, Gani MA, Ardianto C. The change of proinflammatory cytokine tumor necrosis factor α level in the use of meloxicam in rat model of osteoarthritis. Journal of basic and clinical physiology and pharmacology. 2019;30(6):1-8. doi:10.1515/jbcpp-2019-0331
36.    Strukov VI, Kislov AI, Eremina N v., Deriabina GP, Sergeeva-Kondrachenko MY, Antropov AY, Kuzmina Y v., Tayrova KR, Petrova E v., Elistratov DG, Strukova-Jones O v. The use of bone tissue non-steroid anabolizators in treatment of osteoporosis. Research Journal of Pharmacy and Technology. 2019;12(5):2195-2199. doi:10.5958/0974-360X.2019.00366.4
37.    Dhahir BM, Hameed IH, Jaber AR. Prospective and Retrospective Study of Fractures According to Trauma Mechanism and Type of Bone Fracture. Research Journal of Pharmacy and Technology. 2017;10(11):3810. doi:10.5958/0974-360x.2017.00692.8
38.    Santhosh Kumar MP, Priyanka S, Sanofer A. Structure and expression characteristics of bone morphogenic protein 3 in fracture of human jaw bones. Research Journal of Pharmacy and Technology. 2018;11(3):1233-1236. doi:10.5958/0974-360X.2018.00229.9
39.    Santhosh Kumar MP, Nandhini T. Mechanism of action of bone morphogenic protein 3 in the maintenance of tissue homeostasis. Research Journal of Pharmacy and Technology. 2018;11(3):1270-1274. doi:10.5958/0974-360X.2018.00236.6
40.    Hori Y, Miura T, Hirai Y, Fukumura M, Nemoto Y, Toriizuka K, Ida Y. Pharmacognostic studies on ginger and related drugs - Part 1: Five sulfonated compounds from Zingiberis rhizome (Shokyo). Phytochemistry. 2003;62(4):613-617. doi:10.1016/S0031-9422(02)00618-0
41.    Hori Y, Wakabayashi Y, Mizui K, Fukumura M, Toriizuka K, Ida Y. Pharmacognostic Studies on Ginger and Related Drugs-Part 2: Constituents of Zingiberis Processum Rhizome (Kankyo). The Showa University Journal of Pharmaceutical Sciences. 2012; 3(1) 67-76.
42.    Li N, Wang L, Zu L, Wang K, Di L, Wang Z. Antioxidant and cytotoxic diarylheptanoids isolated from Zingiber officinale rhizomes. Chinese Journal of Chemistry. 2012;30(6):1351-1355. doi:10.1002/cjoc.201200121
43.    Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy. 2020;131:110702. doi:10.1016/J.BIOPHA.2020.110702
44.    Bin Sayeed MS, Ameen SS. Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight Against Cancer. Nutrition and Cancer. 2015;67(8):1216-1222. doi:10.1080/01635581.2015.1087042
45.    Badhai S, Barik D, Mallick BC. Anticancer efficacy of β-sitosterol loaded hydroxyapatite-alginate on colon cancer cell in vivo. Research Journal of Pharmacy and Technology. 2020;13(3):1147-1151. doi:10.5958/0974-360X.2020.00211.5
46.    Chauhan S, Sharma A, Upadhyay NK, Singh G, Lal UR, Goyal R. In-vitro osteoblast proliferation and in-vivo anti-osteoporotic activity of Bombax ceiba with quantification of Lupeol, gallic acid and β-sitosterol by HPTLC and HPLC. BMC Complementary and Alternative Medicine. 2018;18(1):1-12. doi:10.1186/s12906-018-2299-1
47.    Gong B, Kao Y, Zhang C, Zhao H, Sun F, Gong Z. Exploring the Pharmacological Mechanism of the Herb Pair “HuangLian-GanJiang” against Colorectal Cancer Based on Network Pharmacology. Evidence-based Complementary and Alternative Medicine. 2019;2019. doi:10.1155/2019/2735050
48.    Endo K, Kanno E, Oshima Y. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry. 1990;29(3):797-799. doi:10.1016/0031-9422(90)80021-8
49.    Shankar Shukla S, Saraf S, Saraf S. Development and validation of spectrophotometric fingerprint method of 6-gingerol in herbal formulation: Talisadi Churna. Research Journal of Pharmacy and Technology. 2012;5(1):138-140.
50.    Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry. 2004;65(13):1937-1954. doi:10.1016/j.phytochem.2004.06.008
51.    Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology. 2010;127(2):515-520. doi:10.1016/j.jep.2009.10.004
52.    Fan JZ, Yang X, Bi ZG. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells. Brazilian Journal of Medical and Biological Research. 2015;48(7):637-643. doi:10.1590/1414-431X20154494
53.    Zang L, Kagotani K, Nakayama H, Bhagat J, Fujimoto Y, Hayashi A, Sono R, Katsuzaki H, Nishimura N, Shimada Y. 10-Gingerol Suppresses Osteoclastogenesis in RAW264.7 Cells and Zebrafish Osteoporotic Scales. Frontiers in Cell and Developmental Biology. 2021;9(March). doi:10.3389/fcell.2021.588093
54.    Kikuzaki H, Usuguchi J, Nakatani N. Constitutents of Zingiberaceae. I. Diarylheptanoids from the Rhizomes of Ginger (Zingiber officinale ROSCOE). Chemical and Pharmaceutical Bulletin. 1991;39(1):120-122. doi:10.1248/cpb.39.120
55.    Wang J, Prinz RA, Liu X, Xu X. In Vitro and In Vivo Antiviral Activity of Gingerenone A on Influenza A Virus Is Mediated by Targeting Janus Kinase 2. doi:10.3390/v12101141
56.    Chen J, Sun J, Prinz RA, Li Y, Xu X. Gingerenone A sensitizes the insulin receptor and increases glucose uptake by inhibiting the activity of p70 S6 kinase HHS Public Access. Mol Nutr Food Res. 2018;62(23):1800709. doi:10.1002/mnfr.201800709
57.    Lin RJ, Chen CY, Chung LY, Yen CM. Larvicidal activities of ginger (Zingiber officinale) against Angiostrongylus cantonensis. Acta Tropica. 2010;115(1-2):69-76. doi:10.1016/J.ACTATROPICA.2009.12.007
58.    Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, Kang N. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Archives of Biochemistry and Biophysics. 2018;646(2018):31-37. doi:10.1016/j.abb.2018.03.030
59.    Kuo CN, Chen CH, Chen SN, Huang JC, Lai LJ, Lai CH, Hung CH, Lee CH, Chen CY. Anti-angiogenic effect of hexahydrocurcumin in rat corneal neovascularization. International Ophthalmology. 2018;38(2):747-756. doi:10.1007/s10792-017-0530-6
60.    Srimuangwong K, Tocharus C, Chintana PY, Suksamrarn A, Tocharus J. Hexahydrocurcumin enhances inhibitory effect of 5-fluorouracil on HT-29 human colon cancer cells. World Journal of Gastroenterology. 2012;18(19):2383-2389. doi:10.3748/wjg.v18.i19.2383
61.    Srimuangwong K, Tocharus C, Tocharus J, Suksamrarn A, Chintana PY. Effects of hexahydrocurcumin in combination with 5-fuorouracil on dimethylhydrazine-induced colon cancer in rats. World Journal of Gastroenterology. 2012;18(47):6951-6959. doi:10.3748/wjg.v18.i47.6951
62.    Fikrika H, Ambarsari L, Sumaryada T. Molecular Docking Studies of Catechin and Its Derivatives as Anti-bacterial Inhibitor for Glucosamine-6-Phosphate Synthase. IOP Conference Series: Earth and Environmental Science. 2016;31(1). doi:10.1088/1755-1315/31/1/012009
63.    Wu MY, Dai DQ, Yan H. PRL-dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins: Structure, Function and Bioinformatics. 2012;80(9):2137-2153. doi:10.1002/prot.24104

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available