Author(s): Sahithya K., K. Karthika

Email(s): sahikandimalla@gmail.com

DOI: 10.52711/0974-360X.2022.00910   

Address: Sahithya K.1*, K. Karthika2
1Department of Microbiology, Indian Academy Degree College - Autonomous, Bengaluru - 560043, Karnataka, India.
2Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore - 641021, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
The present study proposed the green synthesis of silver (Ag) nanoparticles using aqueous extract of Acetabularia acetabulum followed by their fabrication onto montmorillonite (MMT). Fourier transform infrared (FTIR) spectra revealed the involvement of multiple functional groups in the reduction of silver ions to Ag nanoparticles and their stabilization on MMT. The obtained MMT-Ag nanocomposites were characterized by UV–visible spectroscopy, powder X-ray diffraction (XRD), particle size analysis (PSA), scanning electron microscopy (SEM) and Energy Dispersive X-Ray (EDX) analysis. The synthesised Ag nanostructures were found to be cubic shaped with average size ranges from 37nm to 60?nm. The seaweed mediated MMT-Ag nanocomposites were evaluated for their potential antimicrobial properties against the isolated biofouling bacteria. Maximum bactericidal activity was recorded against S. aureus followed by E. coli, M. flavus, Pseudomonas aeruginosa, B. cereus, M. leteus and B. subtilis. In addition, the viability of incorporating MMT-Ag nanocomposites in paint was examined where a significant inhibition of marine fouling bacteria was exhibited by the panel coated by MMT-Ag nanocomposites-based paint as compared to water-based paint. The addition of MMT-Ag nanocomposites in water-based paint was also found to be effective against corrosion from marine water. The present study shows cytotoxicity of MMT-Ag nanocomposites as nanoclay/metallic nanocomposites against A. salina with LD50 values of 200±3.4 µg/ml. The results of the present study suggested the application of A. acetabulum extract as a good bio-resource for the synthesis of Ag nanoparticles and their implementation to combat marine biofouling on ship hulls.


Cite this article:
Sahithya K., K. Karthika. Green Synthesis of Silver Nanoparticles using Marine Sea Weed Acetabularia acetabulum and their Activity as MMT-Ag Nanocomposites towards Antifouling Applications. Research Journal of Pharmacy and Technology2022; 15(12):5397.4. doi: 10.52711/0974-360X.2022.00910

Cite(Electronic):
Sahithya K., K. Karthika. Green Synthesis of Silver Nanoparticles using Marine Sea Weed Acetabularia acetabulum and their Activity as MMT-Ag Nanocomposites towards Antifouling Applications. Research Journal of Pharmacy and Technology2022; 15(12):5397.4. doi: 10.52711/0974-360X.2022.00910   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-4


REFERENCES:
1.    Nikita D.G. Manojkumar M.N. Indrayani D.R. Nanocomposites: A Review on Current Status. Asian Journal of Pharmacy and Technology. 2021; 11(3): 231-237. https://doi.org/10.52711/2231-5713.2021.00038
2.    Anu R. Yadav K. Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production. 2020; 272: 122880. https://doi.org/10.1016/j.jclepro.2020.122880
3.    Kumar P. Joe A.J. Metal nanoparticles from marine seaweeds – a review. Nanotechnology Reviews. 2016; 5(6): 589-600. https://doi.org/10.1515/ntrev-2016-0010
4.    Asmaa M.E.S. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis. 2020; 9(1): 304–339. https://doi.org/10.1515/gps-2020-0031
5.    Ramachandran I. Baskaralingam V. Subramanian K. Balan B. Marimuthu G. Naiyf S.A. Shine K. Mohammed N. Jamal M.K. Giovanni B. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology B: Biology. 2018; 178: 249–258. https://doi.org/10.1016/j.jphotobiol.2017.11.006
6.    Chellamuthu C. Ramkumar B. Puja P. Shanmuganathan R. Pugazhendhi A. Kumar P. Gold nanoparticles using red seaweed Gracilaria verrucosa: green synthesis, characterization and biocompatibility studies. Process Biochemistry. 2019; 80: 58–63. https://doi.org/10.1016/j.procbio.2019.02.009
7.    Petar R. Jovanovic V. Opsenica D.M. Park J. Rollinger J.M. Velicković T.C. Rapid analytical approach for bioprofiling compounds with radical scavenging and antimicrobial activities from seaweeds. Food Chemistry. 2021; 334: 127562-127570. https://doi.org/10.1016/j.foodchem.2020.127562
8.    Goncalo S.M. Sorensen A.-D.M. Safafar H. Pedersen A.H. Holdt S.L. Antioxidant content and activity of the seaweed Saccharina latissima: a seasonal perspective. Journal of Applied Phycology. 2018; 31(2): 1343–1354. https://doi.org/10.1007/s10811-018-1650-8
9.    Qimin S. Wang A. Lu Z. Qin C. Hu J. Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydrate Research. 2017; 453-454: 1–9. https://doi.org/10.1016/j.carres.2017.10.020
10.    Manigandan V. Arumugam V. Pugalendi R. Ramachandran K. Sengodan K. Vijayan S.R. Pugazhendhi A. Antioxidant, anticoagulant and mosquitocidal properties of water-soluble polysaccharides (WSPs) from Indian seaweeds. Process Biochemistry. 2019; 84: 196–204. https://doi.org/10.1016/j.procbio.2019.05.029
11.    Francisco D.S.C. Glauber C. Valesca I.N.S. Luis E.C.C. Willer M.S. Venicios G.S. Diego F.A. Francisco C.N. Eliane M. Judith P.A.F. Regina C.M.P. Maria G.P. Ana L.P.F. Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. International Journal of Biological Macromolecules. 2020; 159: 415–421. http://dx.doi.org/10.1016/j.ijbiomac.2020.05.012
12.    Prakash S. Ravikumar S. Reddy K.V.R. Kannapiran E. Spermicidal activity of Indian seaweeds: anin vitro study. Andrologia. 2013; 46(4): 408–416. http://dx.doi.org/10.1111/and.12096
13.    Ajanth P.M. Parvathy K.R.K. Patra S. Khan I. Natarajan P. Balasubramanian P. Cytotoxic and pharmacokinetic studies of Indian seaweed polysaccharides for formulating raindrop symbiotic candy. International Journal of Biological Macromolecules. 2020; 154: 557–566. https://doi.org/10.1016/j.ijbiomac.2020.03.086
14.    Saraswati G.P.E. Iskandriati D. Tan C. P. Andarwulan N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Marine Drugs. 2019; 17(10): 590-624.  https://doi.org/10.3390/md17100590
15.    Thiruchelvi R. Jayashree P. Hemashree T. Hemasudha T.S. Balashanmugam P. Preliminary Phytochemical Analysis of the Crude extract of Marine Red and Brown Seaweeds. Research Journal of Pharmacy and Technology. 2018; 11(10): 4407-4410. http://dx.doi.org/10.5958/0974-360X.2018.00806.5
16.    Umavandhana R. Jayanthi S. Phytochemical Screening and Free Radical Scavenging Activity on Some Selected Seaweeds from Gulf of Mannar, India. Research Journal of Pharmacy and Technology. 2018; 11(8): 3385-3388. http://dx.doi.org/10.5958/0974-360X.2018.00623.6
17.    Remya R.R. Radhika S.R. A study on Bioactive Compounds Derived from Brown Seaweeds and their Therapeutic Applications towards Various Diseases. Research Journal of Pharmacy and Technology. 2016; 9(4): 369-372. https://doi.org/10.5958/0974-360X.2016.00066.4
18.    Paul-Hubert B. Ricochon G. Linder M. Muniglia L. A new insight into cell walls of Chlorophyta. Algal Research. 2017; 25: 333–371. https://doi.org/10.1016/J.ALGAL.2017.04.008
19.    Jun T. Takashi K. Keisuke O. Noboru O. Toshifumi N. Makoto D. Seiji M. Tomomi K. Mikako S. Shigeyuki Y. Kazumi S. Naoki K. Interhelical interactions between D92 and C218 in the cytoplasmic domain regulate proton uptake upon N-decay in the proton transport of Acetabularia rhodopsin II. Journal of Photochemistry and Photobiology B: Biology. 2018; 183: 35–45. http://doi.org/10.1016/j.jphotobiol.2018.04.012
20.    Ina J.A. Orr R.J.S. Shalchian-Tabrizi K. Brate J. Compartmentalization of mRNAs in the giant, unicellular green algae Acetabularia acetabulum. 2020. https://doi.org/10.1101/2020.09.18.303206
21.    Binoy S. Ruhaida R. Uzochukwu C. Raj M. Kanchikeri M. Modified clay minerals for environmental applications: Mariano, M., Binoy, S., Alessio, L. (Eds.), Modified Clay and Zeolite Nanocomposite Materials, 2019. https://doi.org/10.1016/C2017-0-01250-8
22.    Ali B. Abdelkader B. Abdelghani B. Synthesis and characterization of new poly (4,4-diaminodiphenyl sulphone)/clay modified nanocomposites. Asian Journal Research Chemistry. 2021; 14(1):73-78. https://doi.org/10.5958/0974-4150.2021.00012.2
23.    Sahithya K. Nilanjana D. Enhanced Removal of Dichlorvos from Aqueous Solution using zinc-silver Bimetallic Nanoparticles Embedded in Montmorillonite-Biopolymer Nanobiocomposites: Equilibrium, Kinetics and Thermodynamic Studies. Research Journal of Pharmacy and Technology. 2017; 10(4): 1105-1114. https://doi.org/10.5958/0974-360X.2017.00200.1
24.    Sweety M. Dahiya J.B. Effect of Ammonium Polyphosphate in Combination with Zinc Phosphate and Zinc Borate on Thermal Degradation and Flame Retardation of Polyamide 6/Clay Nanocomposites. Asian Journal Research Chemistry. 2015; 8(1): 39-45. https://doi.org/10.5958/0974-4150.2015.00009.7
25.    Lina R.V. Nilanjana D. Application of gum based and clay based CuO/chitosan nanobiocomposite beads for the removal of nickel (II) from aqueous environments: Equilibrium, kinetic, thermodynamic and ex-situ studies. Research Journal of Pharmacy and Technology. 2017; 10(5): 1347-1359. https://doi.org/10.5958/0974-360X.2017.00239.6
26.    He Z.R. Liu C.S. Gao H.Y. Jie X.H. Lian W.Q. Experimental study on the anti-fouling effects of EDM machined hierarchical micro/nano structure for heat transfer surface. Applied Thermal Engineering. 2019; 162: 114248-114263. https://doi.org/10.1016/j.applthermaleng.2019.114248
27.    Yandi L. Hiebner D.W. Casey E. Self-assembly and regeneration strategy for mitigation of membrane biofouling by the exploitation of enzymatic nanoparticles. Chemical Engineering Journal. 2021; 412: 128666. https://doi.org/10.1016/j.cej.2021.128666
28.    Kavitha S. Raghavan V. Isolation and characterization of marine biofilm forming bacteria from a ship’s hull. Frontiers in Biology. 2018; 13(3): 208–214. https://doi.org/10.1007/s11515-018-1496-0
29.    Vijayan S.R. Santhiyagu P. Singamuthu M. Kumari Ahila N. Jayaraman R. Ethiraj K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides and their antimicrofouling activity. The Scientific World Journal, 2014; 1–10. https://doi.org/10.1155/2014/938272
30.    Inbakandan D. Kumar C. Abraham L.S. Kirubagaran R. Venkatesan R. Khan S.A. Silver nanoparticles with anti microfouling effect: A study against marine biofilm forming bacteria. Colloids and Surfaces B: Biointerfaces. 2013; 111: 636–643.  http://dx.doi.org/10.1016/j.colsurfb.2013.06.048
31.    Chinnasamy B. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii. Journal of Photochemistry and Photobiology B: Biology. 2017; 173: 598–605. http://dx.doi.org/10.1016/j.jphotobiol.2017.06.040
32.    Ramkumar V.S. Pugazhendhi A. Prakash S. Ahila N.K. Vinoj G. Selvam S. Rajendran R.B. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomedicine & Pharmacotherapy. 2017; 92: 479–490. http://dx.doi.org/10.1016/j.biopha.2017.05.076
33.    Thiruchelvi R. Jayashree P. Mirunaalini K. Synthesis of silver nanoparticles using marine red seaweed Gelidiella acerosa -A complete study on its biological activity and its characterization. Materials Today: Proceedings. 2021; 37: 1693–1698. https://doi.org/10.1016/j.matpr.2020.07.242
34.    Gaurav R. Ravindran R. Garcia-Vaquero M. Rai D.K. Sweeney T. O’Doherty J. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocolloids. 2021; 112: 106332-106342. https://doi.org/10.1016/j.foodhyd.2020.106332
35.    Lin Z. Chen J. Yu W. Zhao Q. Liu J. Antimicrobial Nanocomposites Prepared from Montmorillonite/Ag+/Quaternary Ammonium Nitrate. Journal of Nanomaterials. 2018; 2018: 1–7. https://doi.org/10.1155/2018/6190251
36.    Simona L.I. Groza A. Stan G.E. Predoi D. Gaiaschi S. Trusca R. Chapon P. Preparations of Silver/Montmorillonite Biocomposite Multilayers and Their Antifungal Activity. Coatings. 2019; 9(12): 817. http://dx.doi.org/10.3390/coatings9120817
37.    Benjamin L.O. Stellacci F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today. 2015; 10(3): 339–354. https://doi.org/10.1016/j.nantod.2015.04.002
38.    Patil P.A. Bhutkar B.R. Dange Y.D. Kharat S.V. Screening of most Effective Nano metal between AgNP, CuNP and Ag-Cu NP’s Synergistic by In vitro Antibacterial comparison. Asian Journal Research Chemistry. 2016; 6(2): 81-84. http://dx.doi.org/10.5958/2231-5713.2016.00011.8
39.    Asha S. Thirunavukkarasu P. Rajeshkumar S. Green Synthesis of Silver Nanoparticles using Mirabilis jalapa Aqueous Extract and their Antibacterial Activity against Respective Microorganisms. Research Journal Pharmacy and Technology. 2017; 10(3): 811-817. http://dx.doi.org/10.5958/0974-360X.2017.00153.6
40.    Jayaprakashvel M. Sami M. Subramani R. Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications: R. Prasad, Ram, Siddhardha, Busi, Dyavaiah, Madhu (Eds.), Nanostructures for Antimicrobial and Antibiofilm, Applications, Springer International Publishing. 2020. https://doi.org/10.1007/978-3-030-40337-9_10
41.    Ramkumar V.S. Santhiyagu P. Ramasamy R. Arivalagan P. Kumar G. Ethiraj K. Ramaswamy B.R.  Seaweeds: A resource for marine bionanotechnology. Enzyme and Microbial Technology. 2016; 95: 45–57. https://doi.org/10.1016/j.enzmictec.2016.06.009
42.    Mahmuda A. Tajuddin S. Mostafizur R.A.K.M. Atique U. Kaniz F. Binte H. Subrata B. Toshiyuki H. Takeshi S. Masaaki K. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research. 2018; 9: 1-16. https://doi.org/10.1016/j.jare.2017.10.008
43.    Johnson M. Shibila T. Revathy I. Green synthesis of silver nanoparticles using Dictyota bartayresiana J.V. Lamouroux and their cytotoxic potentials. International Biological and Biomedical Journal. 2015; 1: 112-118.
44.    Kumar P. Senthamil S.S. Lakshmi A. Selvaraj M. Macklin R.L. Suganthi P. Sarojini D.B. Govindaraju M. Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest Journal of Nanomaterials and Biostructures. 2012; 7: 1447-1455.
45.    Chen K.Y. Binbin Z. Weibin B. Rongkun J. Yanlian X. Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling. RSC Advances. 2020; 10(24): 13936–13943. http://dx.doi.org/10.1039/d0ra02205e
46.    Francis J.O. Kariuki V.M. Yazgan I. Jimenez A. Luther D. Schulte J. Sadik O.A. Synthesis and antibacterial characterization of sustainable nanosilver using naturally-derived macromolecules. Science of The Total Environment. 2016; 563-564: 977–986. http://dx.doi.org/10.1016/j.scitotenv.2015.12.064


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available