Author(s): Ramesh Ganpisetti, M. Sai Mounika, Indraneel Bag, Ritika Rana, G. Sanjay, Ketham Giribabu

Email(s): up950648@myport.ac.uk

DOI: 10.52711/0974-360X.2022.00942   

Address: Ramesh Ganpisetti1*, M. Sai Mounika2, Indraneel Bag3, Ritika Rana4, G. Sanjay5, Ketham Giribabu6
1Research Scholar, School of Pharmacy University of Portsmouth, Portsmouth, UK.
2Department of Zoology, Acharya Nagarjuna University, Andhra Pradesh, India.
3School of Bioscience and Bioengineering, Lovely Professional University, Punjab.
4MSc. Microbial-biotech of Punjab University, Chandigarh, Punjab.
5Advanced Certification in Digital Design Cad, Mindbox and Autodesk, Chennai.
6Department of Pharmacology, Old block, South campus, Andhra University, Visakhapatnam.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
In the last several years developments in biomaterials and tissue technology have opened the door for novel platform technologies in vitro cancer research, particularly the development of bioprinting techniques. Cells, active compounds and biomaterials can be carefully controlled via bioprinting. In light of this, there are new discoveries of safe and effective forms of treatment to fight the prevalence of the deadly malignant diseases, however most are still under clinical trial model but with promising results. One of the major invasive cancers is breast cancer. This is a heterogeneous kind of cancer that is compounded by the presence and return of tiny groups of stem cells that produce chemical or radiation resistance. Cancer models-modelling an experimental methodology to investigate complex biological systems, has significantly subsidized our understanding of cancer. A two-dimensional cell culture model is particularly difficult to investigate in the cancer environment. More physiologically realistic three-dimensional, in vitro cancer models such as spheroid culture, biopolymer bugs, and cancer on-a-chip equipment have been permitted to develop multiple times in tissue technology. It enables customized tissue models of patients' cancers-specific vascular arrangements and immune cells-to be grown in laboratories for testing. Scientists can then examine the models' responses to chemotherapies and other treatments. Bioprinting cancer technology is free from nature, flexibility, customizability, scalability, and consistency, modeling tumor microenvironments with bio printing has a high potential to reduce difficulties. Those studies need to be properly explained and analyzed in a broad way in this review and to help in the progress of cancer research.


Cite this article:
Ramesh Ganpisetti, M. Sai Mounika, Indraneel Bag, Ritika Rana, G. Sanjay, Ketham Giribabu. 3D Bioprinting Models for Novel Breast Cancer Strategies. Research Journal of Pharmacy and Technology 2022; 15(12):5576-2. doi: 10.52711/0974-360X.2022.00942

Cite(Electronic):
Ramesh Ganpisetti, M. Sai Mounika, Indraneel Bag, Ritika Rana, G. Sanjay, Ketham Giribabu. 3D Bioprinting Models for Novel Breast Cancer Strategies. Research Journal of Pharmacy and Technology 2022; 15(12):5576-2. doi: 10.52711/0974-360X.2022.00942   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-36


REFERENCES:
1.    R. Soffietti, R. Ruda, R. Mutani, et al. Management of brain metastases, J. Neurol. 249 (2002) 1357–1369. https://doi.org/10.1007/s00415-002-0870-6
2.    A.F. Eichler, E. Chung, D.P. Kodack, J.S. Loeffler, D. Fukumura, R.K. Jain, et al.The biology of brain metastases-translation to new therapies, Nat. Rev. Clin. Oncol. 8 (2011) 344–356. https://doi.org/10.1038/nrclinonc.2011.58
3.    M. Kim, S.H. Kizilbash, J.K. Laramy, G. Gampa, K.E. Parrish, J.N. Sarkaria, W.F. Elmquist, et al.Multifactorial problem in the delivery of precision medicine, 35 (2019). https://dx.doi.org/10.1007%2Fs11095-018-2455-9
4.    Mazrouei, R., Velasco, V., and Esfandyarpour, R.  et al.3D-bioprinted all-inclusive bioanalytical platforms for cell studies. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71452-6
5.    Fan, H., Demirci, U., and Chen, P. et al. Emerging organoid models: Leaping forward in cancer research. In Journal of Hematology and Oncology (Vol. 12, Issue 1). https://doi.org/10.1186/s13045-019-0832-4
6.    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6. https://doi.org/10.1126/science.8493529
7.    Boix-Montesinos, P., Soriano-Teruel, P. M., de Benito, A. A., Orzáez, M., and Vincent, M. J. et al. Breast Cancer Models for Nanomedicine Development. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2021.03.018
8.    Holen, I., Speirs, V., Morrissey, B., and Blyth, K.  et.al In vivo models in breast cancer research: progress, challenges and future directions. Disease models and mechanisms, 2017.10(4), 359-371. https://doi.org/10.1242/dmm.028274
9.    Fan L, Strasser weippl K, Li J. Breast cancer in china. Lancet oncol 2014:15(7):e279-89. https://doi.org/10.1016/s1470-2045(13)70567-9
10.    Sigel R, Miller KD,Jemal A. Cancer statistic.Cancer J clin 2018:68 (1):7-30. https://doi.org/10.3322/caac.21442.
11.    Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. et.al Additive manufacturing (3D printing): B Eng. 2018, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
12.    Jain, V.; Haider, N.; Jain, K. 3D Printing in Personalized Drug Delivery. Curr. Pharm. Des. 2018, 24, 5062–5071. https://doi.org/10.2174/1381612825666190215122208
13.    Tamay, D.G.; DursunUsal, T.; Alagoz, A.S.; Yucel, D.; Hasirci,N.;Hasirci,et.al V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front. Bioeng. Biotechnol. 2019, 7, 164. https://doi.org/10.3389/fbioe.2019.00164
14.    Schubert C, van Langeveld MC, Donoso LA. et.al-3D overview from optics to organs. Br J Ophthalmol 2014;98(2):159–161. https://doi.org/10.1136/bjophthalmol-2013-304446
15.    Science and society: Experts warn against bans on 3D printing. Science 2013;342(6157):439.
16.    Lipson H. New world of 3-D printing offers “completely new ways of thinking:” Q and A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse 2013;4(6):12–14. https://doi.org/10.1109/mpul.2013.2279615
17.    Zhang, J.; Yun, S.; Karami, A.; Jing, B.; Zannettino, A.; Du, Y.; Zhang, H. et.al 3D printing of a thermosensitive hydrogel for skin tissue engineering: A proof of concept study. Bioprinting 2020, 19, e00089. https://doi.org/10.1016/j.bprint.2020.e00089
18.    Jia, W.; Gungor-Ozkerim, P.S.; Zhang, Y.S.; Yue, K.; Zhu, K.; Liu, W.; Pi, Q.; Byambaa, B.; Dokmeci, M.R.; Shin, S.R.; et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016, 106, 58–68. 10.1016/j.biomaterials.2016.07.038. Epub 2016 Aug 2.
19.    Konta, Andrea, Marta García-Piña, Dolores Serrano et.al“Personalised 3D printed medicines: which techniques and polymers are more successful?” Bioengineering 4 (2017): 79. 10.3390/bioengineering4040079.
20.    Ventola, Lee C. “Medical applications for 3D printing: current and projected uses.” Pharmacy and Therapeutics 39 (2014): 704. PMID: 25336867; PMCID: PMC4189697.
21.    Moreira, R., Granja, A., Pinheiro, M., and Reis, S. et.al Nanomedicine Interventions in Clinical Trials for the Treatment of Metastatic Breast Cancer. Applied Sciences,2021; 11(4), 1624. https://doi.org/10.3390/app11041624
22.    Nakayama, J., Han, Y., Kuroiwa, Y., Azuma, K., Yamamoto, Y., and Semba, et.al. The In Vivo Selection Method in Breast Cancer Metastasis. International Journal of Molecular Sciences, 22(4), 1886. doi:10.3390/ijms22041886
23.    Nam, J., Son, S., Park, K. S., Zou, W., Shea, L. D., and Moon, J. J. et.al Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews Materials, 4(6), 398-414. https://doi.org/10.1038/s41578-019-0108-1
24.    Sheikh, E., Bhatt, M. L. B., and Tripathi,et.al Role of nano-curcumin: A treatment for cancer. Journal of Medicinal Plants, 5(1), 394-397.
25.    Shi, J., Kantoff, P. W., Wooster, R., and Farokhzad, et.al Cancer nanomedicine: progress,challenges and opportunities. Nature reviews cancer, 17(1), 20. https://doi.org/10.1038/nrc.2016.108
26.    Yang, Y., Yang, H. H., Hu, Y., Watson, P. H., Liu, H., Geiger, T. R., ... and Wakefield, et.al Immuno competent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget, 8(19), 30621. doi: 10.18632/oncotarget.15695.
27.    Youn, Y. S., and Bae, Y. H. et al. Perspectives on the past, present, and future of cancer nanomedicine. Advanced drug delivery reviews, 130, 3-11. doi: 10.1016/j.addr.2018.05.008. Epub 2018 May 18.
28.    Carey, S. P., Goldblatt, Z. E., Martin, K. E., Romero, B., Williams, R. M., and Reinhart-King, C. A. (2016). Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr. Biol. (Camb). 8, 821–835.  doi: 10.1039/c6ib00030d. Epub 2016 Jul 7.
29.    Zhou, X., Zhu, W., Nowicki, M., Miao, S., Cui, H., Holmes, B., et al. (2016). 3D Bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl. Mater. Interfaces 8, 30017–30026. https://pubs.acs.org/doi/abs/10.1021/acsami.6b10673
30.    Samavedi, S., and Joy, N. (2017). 3D printing for the development of in vitro cancer models. Curr. Opin. Biomed. Eng. 2, 35–42. https://doi.org/10.3390/ph14080787
31.    Ling, K., Huang, G. Y., Liu, J. C., Zhang, X. H., Ma, Y. F., Lu, T. J., et al. Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids. Engineering 1, 269–274. https://doi.org/10.15302/J-ENG-2015062
32.    Hribar, K. C., Finlay, D., Ma, X., Qu, X., Ondeck, M. G., Chung, P. H., et al. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab. Chip. 15, 2412–2418. https://doi.org/10.1039/C5LC00159E
33.    Dai, X., Ma, C., Lan, Q., and Xu, T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8:045005. https://doi.org/10.1088/1758-5090/8/4/045005
34.    Soman, P., Kelber, J. A., Lee, J. W., Wright, T. N., Vecchio, K. S., Klemke, R. L., et al. (2012). Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials 33, 7064–7070. https://doi.org/10.1016/j.biomaterials.2012.06.012
35.    Dai, X., Ma, C., Lan, Q., and Xu, et.al 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8:045005. https://doi.org/10.1088/1758-5090/8/4/045005
36.    Laronda, M. M., Rutz, A. L., Xiao, S., Whelan, K. A., Duncan, F. E., Roth, E. W., et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 8:15261. https://doi.org/10.1038/ncomms15261
37.    Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001. https://doi.org/10.1088/1758-5082/6/3/035001
38.    Grolman JM, Zhang D, Smith AM, Moore JS, Kilian KA. et.al Rapid 3D extrusion of synthetic tumor microenvironments. Adv. Mater. 27(37), 5512–5517 (2015). https://doi.org/10.1002/adma.201501729
39.    Heinrich MA, Bansal R, Broekman M et al. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv. Mater. 31(14), 1806590 (2019). doi: 10.1002/adma.201806590. Epub 2019 Jan 31.
40.    W. Sun, B. Starly, A.C. Daly, J.A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara, M. Nishikawa, J. Jang, D.W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R.D. Kamm, V. Mironov, L. Moroni, I.T. Ozbolat,et.al The bioprinting roadmap, Biofabrication 12 (2) (2020), 022002. https://doi.org/10.1088/1758-5090/ab5158
41.    R.I. Horwitz, M.R. Cullen, J. Abell, J.B. Christian,  et al.Medicine. (De)personalized medicine, Science 339 (6124) (2013) 1155–1156. doi: 10.1126/science.1234106
42.    M. Alomari, F.H. Mohamed, A.W. Basit, S. Gaisford,et.al Personalised dosing: printing a dose of one’s own medicine, Int J Pharm 494 (2) (2015) 568–577. doi: 10.1016/j.ijpharm.2014.12.006.
43.    M.A. Hamburg, F.S. Collins, The path to personalized medicine, N Engl J Med 363 (4) (2010) 301–304. doi: 10.1056/NEJMp1006304
44.    CentersforDiseaControlandPrevention.Colorectalcancer statistics. September 2, 2014. doi: 10.3322/caac.21220.
45.    Banks J. Adding value in additive manufacturing: Researchers intheUnited Kingdom and Europe lookto3Dprintingforcustomiza-tion.IEEEPulse2013;4(6):22–26. https://doi.org/10.1109/mpul.2013.2279617
46.    Mertz L. Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse 2013;4(6):15–21. doi: 10.1109/MPUL.2013.2279616.
47.    Ursan I, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc 2013;53(2):136–144. doi: 10.1331/JAPhA.2013.12217.
48.    McGurk M, et al. “Rapid prototyping techniques for anatomical modelling in medicine.” Annals of the Royal College of Surgeons of England 79 (1997): 169.
49.    Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Adv Mater. 2005;44(22):3358-93.
50.    Yim SM, Song JE, Kim HR. et.al Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochem. 2017;59:26-36.
51.    Lauer MK, Estrada‐Mendoza TA, McMillen CD, Chumanov G, Tennyson AG, Smith RC.et.al. Durable Cellulose–Sulfur Composites Derived from Agricultural and Petrochemical Waste. Adv Sustain Syst. 2019;3(10):1900062. https://doi.org/10.1002/adsu.201900062
52.    Dong Y, Lu X, Wang P, Liu W, Zhang S, Wu Z, et al. Click-chemical” modification of cellulose acetate nanofibers: A versatile platform for biofunctionalization. J Mater Chem B. 2018;6(28):4579-82. doi: 10.1039/c8tb01401a.
53.    Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic nanocrystals: syntheses, properties and applications. Chemical Reviews. 2016;116(18):10414-72. https://doi.org/10.1021/acs.chemrev.6b00211
54.    Menon MP, Selvakumar R, Ramakrishna S. et.al Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC advances. 2017;7(68):42750-73. https://doi.org/10.1039/C7RA06713E
55.    Sharma C, Bhardwaj NK. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mater Sci Eng C Mater Biol Appl. 2019;104:109963. doi: 10.1016/j.msec.2019.109963.
56.    Zhang X, Liu Y, Wang Y, Luo X, Li Y, Li B, et al. Surface modification of cellulose nanofibrils with protein nanoparticles for enhancing the stabilization of O/W pickering emulsions. Food Hydrocoll. 2019;97:105180. https://doi.org/10.1021/acsami.0c22560
57.    Feng D, Hao J, Liao R, Chen X, Cheng L, Liu M. et.al Comparative study on the thermal-aging characteristics of cellulose insulation polymer immersed in new three-element mixed oil and mineral oil. J Polym. 2019;11(8):1292. https://doi.org/10.3390/polym11081292
58.    Gumrah DA. Nanocellulose and its composites for biomedical applications. Curr Pharmacol Rep. 2017;24(5):512-28.  doi: 10.2174/0929867323666161014124008.
59.    Heinrich MA, et al., 3D-Bioprinted Mini-Brain: A Glioblastoma Model to Study Cellular Interactions and Therapeutics. Adv Mater, 2019 31(14): p. e1806590. doi: 10.1002/adma.201806590.
60.    Grolman JM, et al., Rapid 3D Extrusion of Synthetic Tumor Microenvironments. Adv Mater, 2015 27(37): p. 5512–7. https://doi.org/10.1002/adma.201501729
61.    Wang X, et al., Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf B Biointerfaces, 2018 171: p. 291–299. doi: 10.1016/j.colsurfb.2018.07.042
62.    Dai X, et al., Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci Rep, 2017 7(1): p. 1457.  https://doi.org/10.1038/s41598-017-01581-y
63.    Okamoto T, Suzuki T, Yamamoto N.et al Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18:438–441. https://doi.org/10.1038/74507
64.    Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4:035005. doi: 10.1088/1758-5082/4/3/035005.
65.    Chien KB, Makridakis E, Shah RN.et.al Three-dimensional printing of soy protein scaffolds for tissue regeneration. Tissue Eng Part C Methods. 2013;19:417–426. doi: 10.1089/ten.TEC.2012.0383.
66.    Chien KB, Aguado BA, Bryce PJ, Shah RN. et.alIn vivo acute and humoral response to three-dimensional porous soy protein scaffolds. ActaBiomater. 2013;9:8983–8990. doi: 10.1016/j.actbio.2013.07.005.
67.    Lim TC, Chian KS, Leong KF et.al. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration. J Biomed Mater Res A. 2010;94:1303–1311.
68.    Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M. et.al Highthroughput laser printing of cells and biomaterials for tissue engineering. ActaBiomater. 2010;6:2494–2500. doi: 10.1016/j.actbio.2009.09.029.
69.    Ringeisen BR, Kim H, Barron JA, Krizman DB, Chrisey DB, Jackman S, Auyeung RY, Spargo BJ. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10:483–491. doi: 10.1089/107632704323061843.
70.    Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. et.al Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication. 2014;6:045001. 71.Raman Kalia, Manpreet Saggi. Telenursing and Challenges in India. Asian J. Nursing Education and Research. 2019; 9(4):573-576.  doi: 10.1088/1758-5082/6/4/045001.
71.    T. R. Bhavani, S. C. Vetrivel. Job satisfaction in Textile Industries: A study of work issue through technology changes. Asian J. Management. 2016; 7(4): 277-280. https://doi.org/10.5958/2321-5763.2016.00042.1
72.    Neeti Roy, Yogendra Jain. Education through ICT Technology: Need of an hour. Asian J. Management 5(2): April-June, 2014 page 246-249.
73.    Ravikumar T. Career Commitment of Women Information Technology Professionals in Bangalore City. Asian J. Management; 2017; 8(1):92-96. https://doi.org/10.5958/2321-5763.2017.00014.2
74.    Khaleeq Ur Raheman. Adoption of Self-Service Technologies and the Impact on Perceptions of Service Quality. Asian J. Management; 2017; 8(1):97-102. http://dx.doi.org/10.5958/2321%E2%80%935763.2017.00015.4
75.    Abdurezak Mohammed Kuhil. Factors Affecting the use of Online Flight Booking in Ethiopian Airlines. Asian Journal of Management. 2019; 10(2): 141-148. https://doi.org/10.5958/2321-5763.2019.00023.4
76.    Pritam Kaushik, Basudev Datta. Applicability of Agile Methodology in Technology Migration Projects: A Thematic Overview. Asian Journal of Management. 2020; 11(1):97-106. https://doi.org/10.5958/2321-5763.2020.00016.5
77.    Neeti Gupta. The Effect of Technology Acceptance on Online Customers’ Repurchase Intention. Asian Journal of Management. 2020;11(3):343-348. https://doi.org/10.5958/2321-5763.2020.00054.2
78.    Dibyajyoti Saha, Ankit Tamrakar. Protein Mass Spectrometry: Novel Approaches in Pharmaceutical Biotechnology. Asian J. Pharm. Ana. 1(2): April-June 2011; Page 25-26
79.    Mohd. Yaqub Khan, Poonam Gupta, Bipin Bihari, Vineet Kumar Sharma, Irfaan Aziz. A Review- Miracle of Nanotechnology in Cosmetics. Asian J. Pharm. Res. 4(1): Jan.-Mar. 2014; Page 16-23.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available