Author(s): Basma KH. Alani, Mohanad H. Hussain, Shahad Basil Ismael, Rasha Abdulelah Ibrahim, Zahraa Ahmed Okhti


DOI: 10.52711/0974-360X.2022.00941   

Address: Basma KH. Alani1, Mohanad H. Hussain2, Shahad Basil Ismael3, Rasha Abdulelah Ibrahim1, Zahraa Ahmed Okhti4
1Department of Plant Biotechnology, College of Biotechnology, Al- Nahrain University, Iraq.
2Department of Molecular and Medical Biotechnology, College of Biotechnology, Al- Nahrain University, Iraq.
3Department of Medical Laboratory Techniques, College of Health and Medical Technology,Uruk University, Iraq.
4Department of Clinical Laboratory Sciences, Pharmacy College, Mustansiriyah University, Baghdad, Iraq.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022

Background and objective: Glycyrrhiza glabra is one of the useful medicinal plants with increasing demand for (herbal medicines, health products, pharmaceuticals). Glycyrrhiza glabra used in traditional medicine across the world for its ethnopharmacological value. Materials and Method: this study was included the evaluation of the effects of green synthetic nanoparticles of Glycyrrhiza glabra aqueous extract loaded with silver nitrate on antibacterial activity and anti-inflammatory activity through burn healing effect. The antibacterial activity of green synthetic silver nanoparticles was studied against one type of Gram-negative (E.coli) and Gram-positive (staphylococcus aureus). Also, the effects of burns healing effect of green synthetic silver nanoparticle was evaluated using albino male mice. The activity of green synthetic nanoparticle at (1.5mM) was investigated in compared with sliver sulfadiazine as positive control and negative control mice (without any treatment) by determining days require for healing. Results: the result showed that different nanoparticles concentrations (1, 1.5, 1.75, 2 mM) can inhibit the bacterial isolate with varying zones of (17, 20, 12,17mm) for Gram-positive Staphylococcus aureus) and (10, 22, 10, 22mm) for Gram-negative (E.coli) at (1, 1.5, 1.75, 2mM) respectively. Also, the results showed that green synthetic nanoparticle could heal burns in 12 day compared to 14 days for sliver sulfadiazine and 18 days for negative control. Conclusion: green synthetic nanoparticle possessed antibacterial and anti-inflammatory activity due to active constituents of plant.

Cite this article:
Basma KH. Alani, Mohanad H. Hussain, Shahad Basil Ismael, Rasha Abdulelah Ibrahim, Zahraa Ahmed Okhti. Biological activity of Green Nanoparticle Synthesized from Glycyrrhiza glabra in vitro and in vivo. Research Journal of Pharmacy and Technology 2022; 15(12):5571.5 doi: 10.52711/0974-360X.2022.00941

Basma KH. Alani, Mohanad H. Hussain, Shahad Basil Ismael, Rasha Abdulelah Ibrahim, Zahraa Ahmed Okhti. Biological activity of Green Nanoparticle Synthesized from Glycyrrhiza glabra in vitro and in vivo. Research Journal of Pharmacy and Technology 2022; 15(12):5571.5 doi: 10.52711/0974-360X.2022.00941   Available on:

1.    Abdel-Fattah, W. I. and Ghareib, W. A. On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng.2018;5 (1).
2.    Archer, N. K.; Mazaitis, M. J.; Costerton, J. W.; Leid, J. G.; Powers, M. E. and Shirtliff, M. E.Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence.2011;2(5):445–459.
3.    Baker, C. N.; Thornsberry, C. and Hawkinson, R. W. Inoculum standardization in antimicrobial susceptibility tests: evaluation of the use of overnight agar cultures and the rapid inoculum standardization system. Clin Microbiol.,1983; 17: 450-457.
4.    Boisseau, P. and Loubaton, B. Nanomedicine, nanotechnology in medicine. C R Phys., 2011;12: 620-636.
5.    El-Kheshen, A. A. and El-Rab, S. F. G.Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Schol Res Librar., 2012. 4(1):53–65.'
6.    El-Rafie, H. M. and Hamed, M. A. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Advances in Natural Sciences: J Nanosci Nanotechnol., 2014; 5(035008):11.
7.    Abdallah1, M.T.; Al-Ezzy, R.M. and Khalaf, H.M.Biosynthesis And Antibacterial Effect Of Silver Nanoparticle Loaded On Glycyrrihza Glabra . Asian Journal Of Advances In Research.2020;5(4): 31-38
8.    Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G. and Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules., 2015;20:8856-8874.
9.    Hebeish, A.; Ramadan, M. A.; krupa, I.; Montaser, A. S.; Salama, A. A. and Abdel-Aziz, M. S. In vitro and in vivo antibacterial potential of chitosan - g – acrylonitrile silver nanocomposite against a pathogenic bacterium. Int J Curr Microbiol App Sci.,2015; 4(3): 5-19.
10.    Kaper, J. B.; Nataro, J. P. and Mobley, H. L. Pathogenic Escherichia coli. Nat Rev Microbiol., 2004;2, 123–140.
11.    Tian, J.; Wong, K. K. Y.; Ho, C.; Lok, C.; Yu, W.; Che, C.; Chiu, J. and Tam, P. K. H.Topical delivery of sliver nanoparticles promotes wound healing. Chem. Med. Chem., 2007; 2(1):129-36.
12.    Marambio-Jones, C. and Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res.2010; 12 : 1531-1551.
13.    Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S. and Van Houdt, R.Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals.,2013; 26, 609–621.
14.    Ortiz, E. P.; Ruiz, J. H. R.; Márquez, E. A. H.; Esparza, J. L.; Cornejo, A. D.; González, J. C. C.; Cristóbal, L. F. E. and López, S. Y. R. Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria.   Hindawi, J Nanomater., 2017;6:1-9.
15.    Prabhu, S. and Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett.,2012; 2 (32):1–10.
16.    Rafieian-Kopaei, M. Medicinal plants and the human needs. J Herbmed Pharmacol., Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran., 2012;1(1): 1–2.
17.    Shrivastava, S.; Bera, T. ; Roy, A.; Singh, G.; Ramachandrarao, P. and Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology., 2007;18 :103-112.
18.    Dutta S.Kulkarni PK.T S. Dissolution behavior of Olmesartan Medoxomil drug in Polymeric Micelles of Soluplus and Pluronic F127. Research Journal of Pharmacy and Technology. 2021;14(4):2200-4.
19.    Muhammad Isrul, Risky Juliansyah, Ahmad Saleh, Wa Ode Yuliastri, Jastria Pusmarani, Himaniarwati, Wa Ode Wahyuni Maulidina. Phytochemical Analysis, Standardization and Cytotoxic Activity of Curcuma aureginosa Extract in Human Breast Cancer (MCF-7) Cell Line. Research J. Pharm. and Tech. 2019; 12(4): 1967-1973.
20.    Zahraa Abdulelah Al Naqqash, Huda Khalil Al-Bazaz, Fatima Mahdi Salh, Shahad Qusay Ibraheem. GC-Mass and Phytochemical Investigation of Cymbopogon citratus. Research J. Pharm. and Tech 2019; 12(1): 67-73.
21.    Soo-Hwan, K.; Lee, H.; Ryu, D.; Choi, S. and Lee, D. Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli. J Korean Microbiol Biotechnol., 2011; 39(1):77–85.
22.    Ranganadha Reddy , Ravi Kumar V, Priyanka M, Sastry KP. Experimental Studies on Influence of Different Doses of Gypsum on Essential Oil Yield of Lemongrass var. Krishna (Cymbopogon flexuosus). Research J. Pharm. and Tech. 2014; 7(4): 439-446.
23.    J Ramamoorthy, S Venkataraman, R Meera, N Chidambaranathan, P Devi Devisree. Phyto-Physico Chemical Investigation, Anti-inflammatory and Antimicrobial Activities of Pollianthes tuberosa Linn. Research J. Pharm. and Tech. 2009;2 (4): 738-742.
24.    Ardani IGAW, Nilam M, Puspita HA, Narmada IB. Effectiveness of Toothpaste containing Pyrophosphate and Papain to Inhibit Calculus Formation in patient using Fixed Orthodontic Appliance. Res J Pharm Technol. 2019;12(8): 3797–801.
25.    Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A., and Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res Lett.2018; 13: 44.
26.    Vasudev Pai, Rudraprabhu V. Savadi, Anant Bhandarkar. In-Vitro Alpha-Amylase Inhibition Action of Isolated Phytoconstituent in Zanthoxylum rhetsa (Roxb) Bark. Research J. Pharm. and Tech. 2011; 4(7): 1147-1150.
27.    Ritmaleni, Sardjiman, Indah Purwantini. Antimicrobial Activity of Curcumin Analog PGV-6, HGV-6 and GVT-6. Research J. Pharm. and Tech. 2021; 14(2):599-604.
28.    Wong, K. K.; Cheung, S. O.; Huang, L.; Niu, J.; Tao, C.; Ho, C. M.; Che, C. M. and Tam, P. K. Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem. 2009; 4:1129–1135.
29.    Kulveer Singh, Suman Kumari, Y.K. Gupta. Synthesis and Antimicrobial Activity of New Pyrazoles and Chalcones Derived from Cyclic Imides. Research J. Pharm. and Tech. 2017; 10(12): 4483-4488.
30.    Bokov D.O., Nizamova L.A., Morokhina S.L., Marakhova A.I., Bobkova N.V., Sergunova E.V., Kovaleva T.Yu., Balobanova N.P., Prostodusheva T.V., Klyukina E.S., Chevidaev V.V., Samylina I.A., Lazareva N.B., Krasnyuk I.I. Pharmacognostic studies of Origanum L. species Medicinal plant raw materials. Research J. Pharm. and Tech. 2020; 13(9):4365-4372. doi: 10.5958/0974-360X.2020.00772.6.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available