Author(s): Audia Triani Olii, Akhmad Kharis Nugroho, Ronny Martien, Sugeng Riyanto


DOI: 10.52711/0974-360X.2022.00937   

Address: Audia Triani Olii1*, Akhmad Kharis Nugroho2, Ronny Martien2, Sugeng Riyanto2
1Faculty of Pharmacy, Universitas Muslim Indonesia, Makassar, Indonesia.
2Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022

Vitamin D3 (Cholecalciferol) is a fat-soluble vitamin that is claimed to be an ingredient added to food and beverage products such as cheese and milk. However, due to its unstable nature, it causes vitamin D3 to be degraded in the product. Niosomes are a vesicle drug delivery system formed by nonionic surfactants and cholesterol that can protect both hydrophilic and lipophilic compounds by entrapping them in their vesicle system. Span 60 is the surfactant most often used to form niosomes and cholesterol because it is known to have a higher entrapment ability than other nonionic surfactants. Using Design-Expert version 10 with the Simplex Lattice Design (SLD) model, eight formulas with varying concentrations of Span 60 cholesterol were obtained. SLD analysis results showed a negative interaction (interaction coefficient -301.35) between Span 60 cholesterol on particle size so that the Span 60 Cholesterol mixture reduced the size of niosome particles. However, cholesterol has a more significant positive effect (coefficient value + 279.45) on niosome particle size than Span 60 (coefficient value + 243.20), which means a formula with a higher amount of cholesterol causes a larger particle size. Contrary to zeta potential, Span 60 shows a more significant negative effect (coefficient value -47.54) than cholesterol (coefficient value-29.25), which means, Formula with a higher number of Span 60 causes the zeta potential to be more negative.

Cite this article:
Audia Triani Olii, Akhmad Kharis Nugroho, Ronny Martien, Sugeng Riyanto. Effect of Ratio Span 60 - Cholesterol on the Characteristic of Niosomes Vitamin D3. Research Journal of Pharmacy and Technology 2022; 15(12):5551-4. doi: 10.52711/0974-360X.2022.00937

Audia Triani Olii, Akhmad Kharis Nugroho, Ronny Martien, Sugeng Riyanto. Effect of Ratio Span 60 - Cholesterol on the Characteristic of Niosomes Vitamin D3. Research Journal of Pharmacy and Technology 2022; 15(12):5551-4. doi: 10.52711/0974-360X.2022.00937   Available on:

1.    Hutchinson K. Healy M. Crowley V. Louw M. Rochev Y. Verification of Abbott 25-OH-vitamin D assay on the architect system. Practical Laboratory Medicine. 2017 Apr;7:27–35.
3.    Jayaratne N. Hughes MCB. Ibiebele TI. van den Akker S. van der Pols JC. Vitamin D intake in Australian adults and the modeled effects of milk and breakfast cereal fortification. Nutrition. 2013 Jul;29:1048–53.
4.    Jakobsen J. Knuthsen P. Stability of vitamin D in foodstuffs during cooking. Food Chemistry. 2014 Apr;148:170–5.
5.    Kazmi SA. Vieth R. Rousseau D. Vitamin D3 fortification and quantification in processed dairy products. International Dairy Journal. 2007 Jul;17(7):753–9.
6.    Park SJ. Garcia CV. Shin GH. Kim JT. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chemistry. 2017 Jun;225:213–9.
7.    Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. Journal of Controlled Release. 2014 Jul;185:22–36.
8.    Tavano L. Aiello R. Ioele G. Picci N. Muzzalupo R. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties. Colloids and Surfaces B: Biointerfaces. 2014 Jun;118:7–13.
9.    Waddad AY. Abbad S. Yu F. Munyendo WLL. Wang J. Lv H. et al. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. International Journal of Pharmaceutics. 2013 Nov;456(2):446–58.
10.    Prabhjot K. Loveleenpreet K. Niosomes used as Targeting Drug Delivery System: A Overview. 2014;6. ISSN 0974-4169
11.    Manvi SR. Gupta VRM. Srikanth K. Devanna N. Formulation and Evaluation of Candesartan Niosomal Suspension. 2012;4. ISSN 0974-3618
12.    Salve PS. Development and evaluation of topical drug delivery system for terbinafine hydrochloride using niosomes. 2011;12. ISSN-0976-2981
13.    Gondkar SB. Malekar NS. Saudagar RB. An overview on trends and development of niosomes as drug delivery. Res Jour Topi and Cosmet Scie. 2016;7(2):79.
14.    Kishor DB. Darekar AB. Saudagar RB. An Overview a Novel Trend in Drug Delivery: Niosomes. Rese Jour Pharmaceut Dosag Form and Technol. 2016;8(3):211.
15.    Parmar RP. Parmar RB. Conceptual Aspects of Vesicular Drug Delivery System with Special Reference to Niosome. 3(2):8. ISSN-2231-5705
16.    Gharbavi M. Amani J. Kheiri-Manjili H. Danafar H. Sharafi A. Niosome: A Promising Nanocarrier for Natural Drug Delivery through Blood-Brain Barrier. Advances in Pharmacological Sciences. 2018 Dec 11;2018:1–15.
17.    Ramadan WM. Singh AP. Preparation of Acyclovir Loaded Non ionic Surfactant Vesicles (Niosomes) Using Reverse Phase Evaporation Technique. 2009;3. ISSN 0974-3618
18.    Kumar YP. Kumar KV. Kishore VS. Preparation and Evaluation of Diclofenac Niosomes by Various Techniques. 2013;5. ISSN 0974-3618
19.    Kumar GP. Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharmaceutica Sinica B. 2011 Dec;1(4):208–19.
20.    Makeshwar KB. Wasankar SR. Niosome: a Novel Drug Delivery System. 3(1):5. ISSN-2231-5683
21.    Mohanty D. Jhansi M. Bakshi V. Haque A. Swapna S. Sahoo CK. et al. Niosomes: A Novel Trend in Drug Delivery. Rese Jour of Pharm and Technol. 2018;11(11):5205.
22.    Khan MI. Madni A. Peltonen L. Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. European Journal of Pharmaceutical Sciences. 2016 Dec;95:88–95.
23.    Abdelkader H. Alani AWG. Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Delivery. 2014 Mar;21(2):87–100.
24.    Krishnaraj K. Jothy A. Chaudhari PS. Pushpalatha HL. Shanmuganthan S. Fabrication and Characterization of Herbal Drug – Loaded Nonionic Surfactant Based Niosomal Topical Gel. In 2016. ISSN:0975-1459
25.    Uchegbu IF. Florence AT. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Advances in Colloid and Interface Science. 1995 Jun;58(1):1–55. SSDI 0001-8686(95)00242-1
26.    Uchegbu IF. Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. International Journal of Pharmaceutics. 1998 Oct;172(1–2):33–70. PII S0378-5173(98)00169-0
27.    Kopermsub P. Mayen V. Warin C. Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. Food Research International. 2011 Mar;44:605–12.
28.    Basiri L. Rajabzadeh G. Bostan A. Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT. 2017 Oct;84:471–8.
29.    Ritwiset A. Krongsuk S. Johns JR. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study. Applied Surface Science. 2016 Sep;380:23–31.
30.    Mohammadi M. Ghanbarzadeh B. Hamishehkar H. Formulation of Nanoliposomal Vitamin D3 for Potential Application in Beverage Fortification. Advanced Pharmaceutical Bulletin. 2014:569-575.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available