Author(s): Arti Gupta, Viney Lather, Dushyanth R. Vennapu, Sandeep Kumar, Mallikarjun.B.P., Neerupma Dhiman, Archana Sharma

Email(s): asharma22@amity.edu

DOI: 10.52711/0974-360X.2022.00932   

Address: Arti Gupta1,3, Viney Lather1, Dushyanth R. Vennapu2, Sandeep Kumar3 Mallikarjun.B.P.4, Neerupma Dhiman1, Archana Sharma1*
1Amity Institute of Pharmacy, Amity University, Noida-201310. India.
2KLE University College of Pharmacy, Belagavi, India.
3School of Pharmacy, Sharda University, Greater Noida, India.
4IIMT College of Pharmacy, Greater Noida.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
Background- A series of aromatic sulfonamides incorporating coumarin as a lead were designed a for epilepsy target. Carbonic anhydrase is an influential target for the expansion of lead to treat epilepsy. Experimentally known carbonic anhydrase determents were identified to develop ligand based pharmacophore for anticonvulsant model. The X-ray crystallographic make-up of carbonic anhydrases with several inhibitors were utilized to develop ten energy optimized structure based (E- pharmacophore model). Pharmacophore matched candidates were utilized for docking to reclaim hits with scaffolds. The molecules having diverse structures, high docking score and low binding energy for various crystal structures of carbonic anhydrase were selected as final hits (leads). DFT is utilized to get electronic features of hits. The docking study of ligands by discovery studio had helped to establish binding interactions. The known carbonic anhydrase was reused for the development of pharmacophore hypothesis DHHRR. Based on Insilco process we came across structurally diverse hits as noncompetitive carbonic anhydrase inhibitors with better ADME. The best three hits 4, 6 and 17 were nontoxic and were selective carbonic anhydrase inhibitors with the IC50 values respectively (IC50 2.01, 2.59, 2.469). The study describes that the combined pharmacophore appeal to identify various hits which have good binding affinity for the active site of enzyme in all feasible bioactive conformations.


Cite this article:
Arti Gupta, Viney Lather, Dushyanth R. Vennapu, Sandeep Kumar, Mallikarjun.B.P., Neerupma Dhiman, Archana Sharma.3D-QSAR, E-pharmacophore and molecular docking to explore substituted sulfonamides as carbonic anhydrase inhibitors in epilepsy. Research Journal of Pharmacy and Technology2022; 15(12):5521-8. doi: 10.52711/0974-360X.2022.00932

Cite(Electronic):
Arti Gupta, Viney Lather, Dushyanth R. Vennapu, Sandeep Kumar, Mallikarjun.B.P., Neerupma Dhiman, Archana Sharma.3D-QSAR, E-pharmacophore and molecular docking to explore substituted sulfonamides as carbonic anhydrase inhibitors in epilepsy. Research Journal of Pharmacy and Technology2022; 15(12):5521-8. doi: 10.52711/0974-360X.2022.00932   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-26


REFERENCES:
1.    C.T. Supuran, Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov. 7 (2008) 168–181. https://doi.org/10.1038/nrd2467.
2.    A. Thiry, J.-M. Dogne, C. Supuran, B. Masereel, Carbonic Anhydrase Inhibitors as Anticonvulsant Agents, Curr. Top. Med. Chem. 7 (2007) 855–864. https://doi.org/10.2174/156802607780636726.
3.    C.T. Supuran, A. Scozzafava, Carbonic-anhydrase inhibitors and their therapeutic potential, Expert Opin. Ther. Pat. 10 (2000) 575–600. https://doi.org/10.1517/13543776.10.5.575.
4.    B. Masereel, S. Rolin, F. Abbate, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors: Anticonvulsant sulfonamides incorporating valproyl and other lipophilic moieties, J. Med. Chem. 45 (2002) 312–320. https://doi.org/10.1021/jm0109189.
5.    E. Bruno, M.R. Buemi, L. De Luca, S. Ferro, A.M. Monforte, C.T. Supuran, D. Vullo, G. De Sarro, E. Russo, R. Gitto, In Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents, ChemMedChem. (2016) 1812–1818. https://doi.org/10.1002/cmdc.201500596.
6.    M. Aggarwal, B. Kondeti, R. McKenna, Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: A patent review, Expert Opin. Ther. Pat. 23 (2013) 717–724. https://doi.org/10.1517/13543776.2013.782394.
7.    T. Gokcen, M. Al, M. Topal, I. Gulcin, T. Ozturk, A.C. Goren, Synthesis of some natural sulfonamide derivatives as carbonic anhydrase inhibitors, Org. Commun. 10 (2017) 15–23. https://doi.org/10.25135/acg.oc.4.16.05.418.
8.    C. Temperini, A. Innocenti, A. Scozzafava, S. Parkkila, C.T. Supuran, The coumarin-binding site in carbonic anhydrase accommodates structurally diverse inhibitors: The antiepileptic lacosamide as an example and lead molecule for novel classes of carbonic anhydrase inhibitors, J. Med. Chem. 53 (2010) 850–854. https://doi.org/10.1021/jm901524f.
9.    Z.C. Wang, Y.J. Qin, P.F. Wang, Y.A. Yang, Q. Wen, X. Zhang, H.Y. Qiu, Y.T. Duan, Y.T. Wang, Y.L. Sang, H.L. Zhu, Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: Design, synthesis, inhibitory activity and 3D-QSAR analysis, Eur. J. Med. Chem. 66 (2013) 1–11. https://doi.org/10.1016/j.ejmech.2013.04.035.
10.    M.A. Abdelrahman, H.S. Ibrahim, A. Nocentini, W.M. Eldehna, A. Bonardi, H.A. Abdel-Aziz, P. Gratteri, S.M. Abou-Seri, C.T. Supuran, Novel 3-substituted coumarins as selective human carbonic anhydrase IX and XII inhibitors: Synthesis, biological and molecular dynamics analysis, Eur. J. Med. Chem. 209 (2021) 112897. https://doi.org/10.1016/j.ejmech.2020.112897.
11.    M.O. Karataş, H. Uslu, S. Sarı, M.A. Alagöz, A. Karakurt, B. Alıcı, C. Bilen, E. Yavuz, N. Gencer, O. Arslan, Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies, J. Enzyme Inhib. Med. Chem. 31 (2016) 760–772. https://doi.org/10.3109/14756366.2015.1063624.
12.    N. Siddiqui, S.N. Pandeya, S.A. Khan, J. Stables, A. Rana, M. Alam, M.F. Arshad, M.A. Bhat, Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain, Bioorganic Med. Chem. Lett. 17 (2007) 255–259. https://doi.org/10.1016/j.bmcl.2006.09.053.
13.    B. Malawska, New Anticonvulsant Agents, Front. Med. Chem. - (Volume 4). (2012) 805–841. https://doi.org/10.2174/978160805207310904010805.
14.    A. Irfan, L. Rubab, M.U. Rehman, R. Anjum, S. Ullah, M. Marjana, S. Qadeer, S. Sana, Coumarin sulfonamide derivatives: An emerging class of therapeutic agents, Heterocycl. Commun. 26 (2020) 46–59. https://doi.org/10.1515/hc-2020-0008.
15.    H.A. Abuelizz, R. El Dib, M. Marzouk, E.H. Anouar, Y.A. Maklad, H.N. Attia, R. Al-Salahi, Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives, Molecules. 22 (2017) 1–13. https://doi.org/10.3390/molecules22071094.
16.    C. Türkeş, M. Arslan, Y. Demir, L. Çoçaj, A. Rifati Nixha, Ş. Beydemir, Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors, Bioorg. Chem. 89 (2019) 103004. https://doi.org/10.1016/j.bioorg.2019.103004.
17.    A. Bytyqi-Damoni, A. Kestane, P. Taslimi, B. Tuzun, M. Zengin, H.G. Bilgicli, İ. Gulcin, Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies, J. Mol. Struct. 1202 (2020) 1–12. https://doi.org/10.1016/j.molstruc.2019.127297.
18.    X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, Curr. Comput. Aided-Drug Des. 7 (2012) 146–157. https://doi.org/10.2174/157340911795677602.
19.    U. Abdulfatai, A. Uzairu, S. Uba, Quantitative structure-activity relationship and molecular docking studies of a series of quinazolinonyl analogues as inhibitors of gamma amino butyric acid aminotransferase, J. Adv. Res. 8 (2017) 33–43. https://doi.org/10.1016/j.jare.2016.10.004.
20.    G.P. Rosa, A. Palmeira, D.I.S.P. Resende, I.F. Almeida, A. Kane-Pagès, M.C. Barreto, E. Sousa, M.M.M. Pinto, Xanthones for melanogenesis inhibition: Molecular docking and QSAR studies to understand their anti-tyrosinase activity, Bioorganic Med. Chem. 29 (2021). https://doi.org/10.1016/j.bmc.2020.115873.
21.    M. Li, Q. Mei, B. Wei, Z. An, J. Sun, J. Xie, M. He, Mechanism and kinetics of ClO[rad]-mediated degradation of aromatic compounds in aqueous solution: DFT and QSAR studies, Chem. Eng. J. 412 (2021) 128728. https://doi.org/10.1016/j.cej.2021.128728.
22.    A. Bahuguna, P. V. Bharatam, D.S. Rawat, 3D QSAR studies on amphiphilic indoles for antimycobacterial activity, J. Biochem. Mol. Toxicol. 35 (2021) e22675. https://doi.org/10.1002/jbt.22675.
23.    R. Abdizadeh, K. Ghatreh-Samani, F. Hadizadeh, T. Abdizadeh, Structural investigation of isatin-based benzenesulfonamides as carbonic anhydrase isoform IX inhibitors endowed with anticancer activity using molecular modeling approaches, J. Mol. Struct. 1229 (2021) 129735. https://doi.org/10.1016/j.molstruc.2020.129735.
24.    N. Bhujbal, D. Gaikwad, Y. Jagdale, C. Pawar, Synthesis, antimicrobial and anti-tubercular activity study of N-(substituted-benzyl)-4-(trifluoromethyl)thiazole-2-sulfonamide and 2-(N-(substituted-benzyl)sulfamoyl)thiazole-4-carboxylic acid, J. Chinese Chem. Soc. (2021). https://doi.org/10.1002/jccs.202000421.
25.    M. Kalaycı, C. Türkeş, M. Arslan, Y. Demir, Ş. Beydemir, Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors, Arch. Pharm. (Weinheim). 354 (2021) 2000282. https://doi.org/10.1002/ardp.202000282.
26.    S. Salerno, G. Amendola, A. Angeli, E. Baglini, E. Barresi, A.M. Marini, R. Ravichandran, M. Viviano, S. Castellano, E. Novellino, Inhibition studies on carbonic anhydrase isoforms I, II, IV and IX with N-arylsubstituted secondary sulfonamides featuring a bicyclic tetrahydroindazole scaffold, Eur. J. Med. Chem. (2021) 113490.
27.    M. Tugrak, H.I. Gul, H. Akincioglu, I. Gulcin, New Chalcone Derivatives with Pyrazole and Sulfonamide Pharmacophores as Carbonic Anhydrase Inhibitors, Lett. Drug Des. Discov. 18 (2020) 191–198. https://doi.org/10.2174/1570180817999201001160414.
28.    K.M. Chandra, N.S. Goud, M. Arifuddin, M. Alvala, R. Alvala, A. Angeli, C.T. Supuran, Synthesis and biological evaluation of novel 4,7-disubstituted coumarins as selective tumor-associated carbonic anhydrase IX and XII inhibitors, Bioorganic Med. Chem. Lett. 39 (2021) 127877. https://doi.org/10.1016/j.bmcl.2021.127877.
29.    E.B. Cakmak, B. Zengin Kurt, D. Ozturk Civelek, A. Angeli, A. Akdemir, F. Sonmez, C.T. Supuran, M. Kucukislamoglu, Quinoline-sulfamoyl carbamates/sulfamide derivatives: Synthesis, cytotoxicity, carbonic anhydrase activity, and molecular modelling studies, Bioorg. Chem. 110 (2021) 104778. https://doi.org/10.1016/j.bioorg.2021.104778.
30.    P. Singh, P. Purnachander Yadav, B. Swain, P.S. Thacker, A. Angeli, C.T. Supuran, M. Arifuddin, Discovery of a novel series of indolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors, Bioorg. Chem. 108 (2021) 104647. https://doi.org/10.1016/j.bioorg.2021.104647.
31.    M. Ekiz, A. Tutar, S. Ökten, B. Bütün, Ü.M. Koçyiğit, P. Taslimi, G. Topçu, Synthesis, characterization, and SAR of arylated indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors, Arch. Pharm. (Weinheim). 351 (2018) 1800167. https://doi.org/10.1002/ardp.201800167.
32.    C.T. Supuran, B.W. Clare, Carbonic anhydrase inhibitors - Part 57: Quantum chemical QSAR of a group of 1,3,4-thiadiazole- and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties, Eur. J. Med. Chem. 34 (1999) 41–50. https://doi.org/10.1016/S0223-5234(99)80039-7.
33.    B.W. Clare, C.T. Supuran, Carbonic anhydrase inhibitors. Part 61. Quantum chemical QSAR of a group of benzenedisulfonamides, Eur. J. Med. Chem. 34 (1999) 463–474. https://doi.org/10.1016/S0223-5234(99)80096-8.
34.    M.O. Karatas, B. Alici, U. Cakir, E. Cetinkaya, D. Demir, A. Ergün, N. Gençer, O. Arslan, Synthesis and carbonic anhydrase inhibitory properties of novel coumarin derivatives, J. Enzyme Inhib. Med. Chem. (2015). https://doi.org/10.3109/14756366.2012.677838.
35.    G. Gurumallappa, J. Jayaprakash, A.A. Puttaswamy, J.H. Sunderraj, P. Mallu, K.N. Beeregowda, 4-(tert-butyl)-N,N-diethylbenzenesulfonamide: Structural, absorption distribution metabolism excretion toxicity (ADMET) and molecular docking studies, Curr. Chem. Lett. 10 (2021) 329–336. https://doi.org/10.5267/j.ccl.2021.3.004.
36.    D.G. Solğun, Ü. Yıldıko, M.S. Ağırtaş, Synthesis, DFT calculations, photophysical, photochemical properties of peripherally metallophthalocyanines bearing (2-(benzo [d][1, 3] dioxol-5-ylmethoxy) phenoxy) substituents, (2021).
37.    M.M.F. Ismail, N.A.M. El-Sayed, H.S. Rateb, Y.A. Ammar, New Hybrids of Sulfonamide/Thiourea: Synthesis, In Silico Study and Antihypertensive Evaluation, Polycycl. Aromat. Compd. (2021) 1–12. https://doi.org/10.1080/10406638.2021.1872654.
38.    D.S. Reddy, M. Kongot, A. Kumar, Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity, Tuberculosis. 127 (2021) 102050. https://doi.org/10.1016/j.tube.2020.102050.
39.    N.E.H. Hammoudi, W. Sobhi, A. Attoui, T. Lemaoui, A. Erto, Y. Benguerba, In silico drug discovery of Acetylcholinesterase and Butyrylcholinesterase enzymes inhibitors based on Quantitative Structure-Activity Relationship (QSAR) and drug-likeness evaluation, J. Mol. Struct. 1229 (2021) 129845. https://doi.org/10.1016/j.molstruc.2020.129845.
40.    H.M. Alshibl, E.S. Al-Abdullah, M.E. Haiba, H.M. Alkahtani, G.E.A. Awad, A.H. Mahmoud, B.M.M. Ibrahim, A. Bari, A. Villinger, Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents, Molecules. 25 (2020) 3251. https://doi.org/10.3390/molecules25143251.
41.    M. Işık, Ş. Beydemir, Y. Demir, M. Durgun, C. Türkeş, A. Nasır, A. Necip, M. Akkuş, Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies, Int. J. Biol. Macromol. 146 (2020) 1111–1123. https://doi.org/10.1016/j.ijbiomac.2019.09.237.
42.    S. Das, S.S. Mishra, T. Swain, I. Mishra, D. Bhattacharyay, In silico analysis of phytochemicals from neem leaves against shikimate dehydrogenase of mycobacterium tuberculosis causing tuberculosis, Plant Cell Biotechnol. Mol. Biol. 21 (2020) 1–5.
43.    P. Aravindan, K. Sivaraj, C. Kamal, P. Vennila, G. Venkatesh, Synthesis, Molecular structure, Spectral Characterization, Molecular docking and biological activities of (E)-N-(2-methoxy benzylidene) anthracene-2-amine and Co (II), Cu (II) and Zn (II) complexes, J. Mol. Struct. 1229 (2021) 129488.
44.    M.A. Lill, A. Fischer, M. Smiesko, M. Sellner, Decision making in structure-based drug discovery: Visual inspection of docking results, J. Med. Chem. 64 (2021) 2489–2500. https://doi.org/10.1021/acs.jmedchem.0c02227.
45.    J. Krzywik, W. Mozga, M. Aminpour, J. Janczak, E. Maj, J. Wietrzyk, J.A. Tuszyński, A. Huczyński, Synthesis, antiproliferative activity and molecular docking studies of novel doubly modified colchicine amides and sulfonamides as anticancer agents, Molecules. 25 (2020) 1789. https://doi.org/10.3390/molecules25081789.
46.    K.M. Wong, H.K. Tai, S.W.I. Siu, GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking, Chem. Biol. Drug Des. 97 (2021) 97–110. https://doi.org/10.1111/cbdd.13764.
47.    G. Poli, M. Bozdag, E. Berrino, A. Angeli, T. Tuccinardi, F. Carta, C.T. Supuran, N-aryl-N′-ureido-O-sulfamates as potent and selective inhibitors of hCA VB over hCA VA: Deciphering the binding mode of new potential agents in mitochondrial dysfunctions, Bioorg. Chem. 100 (2020) 103896. https://doi.org/10.1016/j.bioorg.2020.103896.
48.    F. Song, X. Huo, Z. Guo, Anti-breast cancer potential of natural and synthetic coumarin derivatives, Curr. Top. Med. Chem. 21 (2021). https://doi.org/10.2174/1568026621666210303145430.
49.    J. Zhang, Y. Tan, G. Li, L. Chen, M. Nie, Z. Wang, H. Ji, Coumarin Sulfonamides and Amides Derivatives: Design, Synthesis, and Antitumor Activity In Vitro, Molecules. 26 (2021) 786. https://doi.org/10.3390/molecules26040786.
50.    F.A. Olotu, C. Agoni, O. Soremekun, M.E.S. Soliman, The recent application of 3D-QSAR and docking studies to novel HIV-protease inhibitor drug discovery, Expert Opin. Drug Discov. 15 (2020) 1–15. https://doi.org/10.1080/17460441.2020.1773428.
51.    S. Sharma, V. Bhatia, Recent trends in QSAR in Modelling of Drug-Protein and Protein-Protein Interactions, Comb. Chem. High Throughput Screen. 23 (2020). https://doi.org/10.2174/1386207323666201209093537.
52.    B. Zengin Kurt, F. Sonmez, D. Ozturk, A. Akdemir, A. Angeli, C.T. Supuran, Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies, Eur. J. Med. Chem. 183 (2019). https://doi.org/10.1016/j.ejmech.2019.111702.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available