Author(s): Mohammed Majid AL-qanbar, Wefak Jbori AL-Bazi, Hepa A. Abd-Alsalam

Email(s): pcr2000@yahoo.com

DOI: 10.52711/0974-360X.2022.00917   

Address: Mohammed Majid AL-qanbar1*, Wefak Jbori AL-Bazi1, Hepa A. Abd-Alsalam2
1Department of Physiology, College of Veterinary Medicine, University of Kerbala, Iraq.
2College of Education for Pure Science, University of Kerbala, Iraq.
*Corresponding Author

Published In:   Volume - 15,      Issue - 12,     Year - 2022


ABSTRACT:
Methionine is a specific amino acid which contains sulfur, and can be used to make proteins, found in fish, meat, and dairy products, the excess intake of L-methionine lead to elevated homocysteine (Hcy) level that known as Hyperhomocysteinemia (HHcy). Increased Hcy plasma may represent an independent risk factor for osteoporotic fractures, and therefore may also negatively affect bone metabolism. This study was designed to examine the impact of Hcy on osteoclast activity in Male Rabbits, following methionine overload. To achieve this study's aims, we recruiting (20) males of New Zealand white rabbits that were divided into (10/group) control group and a group treated with methionine. Then after the intubation of methionine overload, we measured the "Receptor Activator of Nuclear factor Kappa-b" (RANK) and "Receptor Activator of Nuclear factor Kappa-b ligand" (RANK-L) levels in the blood, in addition to histological examination of the trabecular structure of femur bone. The results show a significant (p=0.001) increase in serum RANK and RANK-L levels of methionine treated group in comparison with the control group. The histological examination of the trabecular structure of femur bone shows an increase in osteoclasts percentage, activity, and large resorption pits in the methionine treated group. The HHcy that was induced by methionine overload, caused an increase in osteoclast activity and numbers in male rabbits suggested a mechanistic role for bone resorption by Hcy. Future research clarifying the mechanistic function of elevated concentrations of Hcy in osteoporosis may have important therapeutic implications.


Cite this article:
Mohammed Majid AL-qanbar, Wefak Jbori AL-Bazi, Hepa A. Abd-Alsalam. The effect of Hyperhomocysteinemia on the Osteoclasts activity in Male New Zealand White Rabbits. Research Journal of Pharmacy and Technology2022; 15(12):5443-8. doi: 10.52711/0974-360X.2022.00917

Cite(Electronic):
Mohammed Majid AL-qanbar, Wefak Jbori AL-Bazi, Hepa A. Abd-Alsalam. The effect of Hyperhomocysteinemia on the Osteoclasts activity in Male New Zealand White Rabbits. Research Journal of Pharmacy and Technology2022; 15(12):5443-8. doi: 10.52711/0974-360X.2022.00917   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-11


REFERENCES:
1.    Remer, T. Influence of nutrition on acid-base balance–metabolic aspects. European Journal of Nutrition, 2001; 40(5), 214-220.
2.    Dhonukshe‐Rutten, R. A., Pluijm, S. M., de Groot, L. C., Lips, P., Smit, J. H., and van Staveren, W. A. Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. Journal of Bone and Mineral Research, 2005; 20(6), 921-929.
3.    Wijekoon, E. P., Hall, B., Ratnam, S., Brosnan, M. E., Zeisel, S. H., and Brosnan, J. T. Homocysteine metabolism in ZDF (type 2) diabetic rats. Diabetes, 2005; 54(11), 3245-3251.
4.    Zaric, B. L., Obradovic, M., Bajic, V., Haidara, M. A., Jovanovic, M., and Isenovic, E. R. Homocysteine and hyperhomocysteinaemia. Current Medicinal Chemistry, 2019; 26(16), 2948-2961.
5.    Tinelli, C., Di Pino, A., Ficulle, E., Marcelli, S., and Feligioni, M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Frontiers in Nutrition, 2019; 6, 49.
6.    Mrs. Anna Hima Thomas. Case report of a child with Homocystinuria- An Inborn Error of Metabolism. Int. J. Nur. Edu. and Research. 2020; 8(2):158-160.
7.    Rahul Rawat, Yogesh Josh. Effect of Antihypertensive Drugs on Homocysteine level among Hypertensive Patients. Asian J. Res. Pharm. Sci. 2018; 8(4): 219-222.
8.    Cristiana, F., Zamosteanu, N., and Albu, E. Homocysteine in red blood cells metabolism—Pharmacological approaches. Blood Cell—An Overview of Studies in Hematology, 2012.
9.    Sandeep Goyal, V.K. Bansal, Dhruba Sankar Goswami, Suresh Kumar. sVascular Endothelial Dysfunction: Complication of Diabete Mellitus and Hyperhomocysteinemia. Research J. Pharm. and Tech.3 (3): July-Sept. 2010; Page 657-664.
10.    Moretti, R., and Caruso, P. The controversial role of homocysteine in neurology: from labs to clinical practice. International Journal of Molecular Sciences, 2019; 20(1), 231.
11.    Ansari, R., Mahta, A., Mallack, E., and Luo, J. J. Hyperhomocysteinemia and neurologic disorders: a review. Journal of Clinical Neurology, 2014; 10(4), 281-288.
12.    A. Manimaran1, B. Praba, V. M. Chandrasekaran, Karan Agrawal, Akanksha Miharia. Skin Disease analysis using Intuitionistic Fuzzy Set. Research J. Pharm. and Tech. 2018; 11(1): 79-82.
13.    Kailasha Tiger, Ravidra Brahme. Assessment of Priorities for “Access to Primary Facilities” and “Eradication of Social Evils” of Women after Joining Self Help Groups: In Context to Women Empowerment. Research J. Humanities and Social Sciences. 7(4): October- December 2016, 285-288.
14.    D.K.Veer, Gajanan P. Khiste. National Research Performance in the International Context Regarding Productivity of Bibliometric Literature in Indian Citation Index. Res. J. Humanities and Social Sciences. 2018; 9(1): 329-334.
15.    Dr. Sangeeta Jha. Study of hurdles and problems encountered in effective implementation of DWCRA program in Raipur District of Chhattisgarh State. Int. J. Ad. Social Sciences. 2017; 5(2):122-126.
16.    Purnima Kumari. Evaluation of factors affecting the use of Digital Libraries in Private Engineering Colleges of Raipur. Int. J. Ad. Social Sciences. 2017; 5(2):105-108.
17.    Pratibha Barik. General Life Satisfaction of Female Professionals Across Different Organizations. Asian J. Management. 2(4): Oct.-Dec., 2011 page 197-201.
18.    Behera, J., Bala, J., Nuru, M., Tyagi, S. C., and Tyagi, N. Homocysteine as a pathological biomarker for bone disease. Journal of Cellular Physiology, 2017; 232(10), 2704-2709.
19.    Hari R., Vadivu R., Radha R.. Effect of Leaf Extract from Mangrove Species Rhizophora Mucronata Poir on Homocysteine Induced Coagulation Factors. Research J. Pharm. and Tech. 2019; 12(10):4807-4811.
20.    Ferdous, H., Afsana, F., Qureshi, N. K., and Rouf, R. S. B. Osteoporosis: A review. Birdem Medical Journal, 2015; 5(1), 30-36.
21.    Guido, G., Scaglione, M., Fabbri, L., and Ceglia, M. J. The “osteoporosis disease”. Clinical cases in Mineral and Bone Metabolism, 2009; 6(2), 114.
22.    Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E. M., and Xie, C. Osteoblast–osteoclast interactions. Connective Tissue Research, 2018; 59(2), 99-107.
23.    Walsh, M. C., and Choi, Y. Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Frontiers in Immunology, 2014; 5, 511.
24.    Ono, T., Hayashi, M., Sasaki, F., and Nakashima, T. RANKL biology: bone metabolism, the immune system, and beyond. Inflammation and Regeneration, 2020; 40(1), 1-16.
25.    Koh, J. M., Lee, Y. S., Kim, Y. S., Kim, D. J., Kim, H. H., Park, J. Y. and Kim, G. S. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. Journal of Bone and Mineral Research, 2006; 21(7), 1003-1011.
26.    Zidan, R. A., and Elnegris, H. M. Effect of homocysteine on the histological structure of femur in young male albino rats and the possible protective role of folic acid. Journal of Histology and Histopathology, 2015; 2(1), 16.
27.    McLean, R. R., Jacques, P. F., Selhub, J., Tucker, K. L., Samelson, E. J., Broe, K. E. and Kiel, D. P. Homocysteine as a predictive factor for hip fracture in older persons. New England Journal of Medicine, 2004; 350(20), 2042-2049.
28.    Herrmann, M., Tami, A., Wildemann, B., Wolny, M., Wagner, A., Schorr, H.,... and Hübner, U. Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone, 2009; 44(3), 467-475.
29.    Thaler, R., Agsten, M., Spitzer, S., Paschalis, E. P., Karlic, H., Klaushofer, K., and Varga, F. Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. Journal of Biological Chemistry, 2011; 286(7), 5578-5588.
30.    Tyagi, N., Vacek, T. P., Fleming, J. T., Vacek, J. C., and Tyagi, S. C. Hyperhomocysteinemia decreases bone blood flow. Vascular Health and Risk Management, 2011; 7, 31.
31.    Baig, M., Tariq, S., and Tariq, S. Homocysteine and leptin in the pathogenesis of osteoporosis—evidences, conflicts and expectations. Advances in Osteoporosis, 2015; 37.
32.    Herrmann, M., Widmann, T., and Herrmann, W. Homocysteine–a newly recognised risk factor for osteoporosis. Clinical Chemistry and Laboratory Medicine (CCLM), 2005; 43(10), 1111-1117.
33.    Mapara, M., Thomas, B. S., and Bhat, K. M. Rabbit as an animal model for experimental research. Dental Research Journal, 2012; 9(1), 111.
34.    Suvarna, S.K, Christopher Layton and John D. Bancroft. Bancroft's theory and practice of histology techniques. Book. 8th Edition, 2019.
35.    Jasim, B. S., AL-Nasrawii, M. S., and Al-Aaragi, A. N. H. Knowledge of Educational-Staff in Technical Institute of Kerbala towards Ebola Virus. International Journal of Psychosocial Rehabilitation, 2020; 24(09).
36.    Callaway, D. A., and Jiang, J. X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. Journal of Bone and Mineral Metabolism, 2015; 33(4), 359-370.
37.    Collins, J. A., Diekman, B. O., and Loeser, R. F. Targeting aging for disease modification in osteoarthritis. Current Opinion in Rheumatology, 2018; 30(1), 101.
38.    Schröder, K. NADPH oxidases in bone homeostasis and osteoporosis. Free Radical Biology and Medicine, 2019; 132, 67-72.
39.    Agidigbi, T. S., and Kim, C. Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. International Journal of Molecular Sciences, 2019; 20(14), 3576. https://doi.org/10.3390/ijms20143576
40.    Nakanishi, A., Hie, M., Iitsuka, N., and Tsukamoto, I. A crucial role for reactive oxygen species in macrophage colony-stimulating factor-induced RANK expression in osteoclastic differentiation. International Journal of Molecular Medicine, 2013; 31(4), 874-880.
41.    Chen, S., Meng, X. F., and Zhang, C. Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. BioMed Research International, 2013.
42.    Sun, Q. A., Runge, M. S., and Madamanchi, N. R. Oxidative stress, NADPH oxidases, and arteries. Hamostaseologie, 2016; 36(2), 77.
43.    Feng, P. N., Liang, Y. R., Lin, W. B., Yao, Z. R., Chen, D. B., Chen, P. S., and Ouyang, J. Homocysteine induced oxidative stress in human umbilical vein endothelial cells via regulating methylation of SORBS1. Eur. Rev. Med. Pharmacol. Sci, 2018; 20, 6948-6958.
44.    Zhu, J., Zhao, Y., Yu, L., Wang, M., Li, Q., and Xu, S. Pioglitazone restores the homocysteine impaired function of endothelial progenitor cells via the inhibition of the protein kinase C/NADPH oxidase pathway. Molecular Medicine Reports. 2018; 18(2), 1637-1643.
45.    Korkmaz, H. I., Hahn, N. E., Jansen, K. M., Musters, R. J. P., van Bezu, J., van Wieringen, W. N. and Krijnen, P. A. J. Homocysteine-induced inverse expression of tissue factor and DPP4 in endothelial cells is related to NADPH oxidase activity. Physiology International, 2019; 106(1), 29-38.
46.    Oh, J. H., and Lee, N. K. Up-regulation of RANK expression via ERK1/2 by insulin contributes to the enhancement of osteoclast differentiation. Molecules and Cells, 2017; 40(5), 371.
47.    Vijayan, V., Khandelwal, M., Manglani, K., Singh, R. R., Gupta, S. and Surolia, A. Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: pivotal role of the redox regulator forkhead O1. Free Radical Biology and Medicine, 2013; 61, 72-84.
48.    Vijayan, V., and Gupta, S. How Homocysteine Modulates the Function of Osteoblasts and Osteocytes. In Non-Proteinogenic Amino Acids. Intech Open, 2018.
49.    LIU, X. H., Kirschenbaum, A., Yao, S., and Levine, A. C. Interactive effect of interleukin‐6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Annals of the New York Academy of Sciences, 2006; 1068(1), 225-233.
50.    Park, H. J., Baek, K., Baek, J. H. and Kim, H. R. TNFα increases RANKL expression via PGE2-induced activation of NFATc1. International Journal of Molecular Sciences, 2017; 18(3), 495.
51.    Liu, X. H., Kirschenbaum, A., Yao, S., and Levine, A. C. Cross-talk between the interleukin-6 and prostaglandin E2 signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-κB (RANK) ligand/RANK system. Endocrinology, 2005; 146(4), 1991-1998.
52.    Menaa, C., Reddy, S. V., Kurihara, N., Maeda, H., Anderson, D., Cundy, T. and Roodman, G. D. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget’s disease of bone. The Journal of Clinical Investigation, 2000; 105(12), 1833-1838.
53.    Steeve, K. T., Marc, P., Sandrine, T., Dominique, H. and Yannick, F. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine and Growth Factor Reviews, 2004; 15(1), 49-60.
54.    Hashizume, M. and Mihara, M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis, 2011.
55.    Harmer, D., Falank, C., and Reagan, M. R. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Frontiers in Endocrinology, 2019; 9, 788.
56.    Li, W. F., Hou, S. X., Yu, B., Jin, D., Férec, C., and Chen, J. M. Genetics of osteoporosis: perspectives for personalized medicine. Personalized Medicine, 2010; 7(6), 655-668.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available