Author(s): Alexander Patera Nugraha, Diona Olivia Yudianto, Amelia Aisyiah Anwar, Alqomariyah Eka Purnamasari, Rifqah Ananda Mappananrang, Nastiti Faradilla, Ramadhani, Muhammad Luthfi, Tengku Natasha Eleena Binti Tengku Ahmad Noor, Albertus Putera Nugraha, Andreas Pratama Nugraha

Email(s): alexander.patera.nugraha@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2022.00902   

Address: Alexander Patera Nugraha1,2,3, Diona Olivia Yudianto2, Amelia Aisyiah Anwar4, Alqomariyah Eka Purnamasari4, Rifqah Ananda Mappananrang4, Nastiti Faradilla, Ramadhani5,Muhammad Luthfi6, Tengku Natasha Eleena Binti Tengku Ahmad Noor7, Albertus Putera Nugraha8, Andreas Pratama Nugraha9,10
1Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Orthodontics Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Graduate Student of Dental Health Science, Universitas Airlangga, Surabaya, Indonesia.
4Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
5Dentomaxillofacial Radiology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
6Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
7Malaysian Armed Forces Dental Officer, 609 Armed Forces Dental Clinic, Kem Semenggo, Kuching, S

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Introduction: Oral squamous cell carcinoma (OSCC) is an oral epithelial neoplasm with worldwide prevalence of 95% among all oral malignancies. Therapy of OSCC include radiation, chemotherapy, and surgery but causes subsequent cell death, ineffective long-term therapy, and infection risk at surgical site. Curcumin-quercetin is flavonoid derived from Curcuma longa and Allium cepa that can induce apoptosis and inhibit cells metastasis. Combination of curcumin-quercetin has low solubility hence encapsulated by nanoparticle is necessary. Nanostructured lipid carriers (NLCs) can enhance loading capacity and improve stability of curcumin-quercetin, biocompatible, and enhance site-specific targeting efficiency. Administration of combination of curcumin-quercetin loaded nanostructured lipid carrier by injection targeting OSCC cell. Purpose: To analyze the potency of curcumin-quercetin loaded NLCs as OSCC therapy by downregulating AKT/PI3K signaling pathway. Discussion: Curcumin-quercetin loaded NLCs are injected into the body then reach the target cells. This combination later would be encapsulated releasing curcumin-quercetin. Curcumin-quercetin suppresses the AKT/PI3K signaling pathway which is considered as strong cell cycle inductor, inhibitor of pro-apoptotic proteins expression, and has a pivotal role in OSCC metastasis. Inhibition of the pathway decreases the expression of cyclin A/D/E and manifests in the G1/G2/M phase arrest. This condition accompanied by p53 and FOXO-1 expression leads to apoptosis. Downregulating of this pathway decreases NF-kB expression then the expression of MMP-2/9 is lowered and manifests in inhibition of extracellular matrix degradation. This condition leads to migration and metastasis inhibition. Conclusion: Curcumin-quercetin loaded NLCs is potential for OSCC therapy by downregulating AKT/PI3K signalling pathway.


Cite this article:
Alexander Patera Nugraha, Diona Olivia Yudianto, Amelia Aisyiah Anwar, Alqomariyah Eka Purnamasari, Rifqah Ananda Mappananrang, Nastiti Faradilla, Ramadhani, Muhammad Luthfi, Tengku Natasha Eleena Binti Tengku Ahmad Noor, Albertus Putera Nugraha, Andreas Pratama Nugraha. Potential of Curcumin-Quercetin Loaded Nanostructured Lipid Carriers as Oral Squamous Cell Carcinoma Adjuvant Therapy by Downregulating AKT/PI3K Signaling Pathway. Research Journal of Pharmacy and Technology.2022; 15(11):5353-8. doi: 10.52711/0974-360X.2022.00902

Cite(Electronic):
Alexander Patera Nugraha, Diona Olivia Yudianto, Amelia Aisyiah Anwar, Alqomariyah Eka Purnamasari, Rifqah Ananda Mappananrang, Nastiti Faradilla, Ramadhani, Muhammad Luthfi, Tengku Natasha Eleena Binti Tengku Ahmad Noor, Albertus Putera Nugraha, Andreas Pratama Nugraha. Potential of Curcumin-Quercetin Loaded Nanostructured Lipid Carriers as Oral Squamous Cell Carcinoma Adjuvant Therapy by Downregulating AKT/PI3K Signaling Pathway. Research Journal of Pharmacy and Technology.2022; 15(11):5353-8. doi: 10.52711/0974-360X.2022.00902   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-87


REFERENCES:
1.    Johnson E D. Barbara B. René, L., Vivian, W., Julie, B., Jennifer, G. Head And Neck Squamous Cell Carcinoma. Nature Review. 2020;6(2):1-22. doi: 10.1038/s41572-020-00224-3.
2.    Wibowo, RMD., Perdanakusuma, DS., Tanggo, ED. Mechanism of Apoptosis Inhibition to Squamous Cell Carcinoma or Oral Cancer in Cisplation Treatment. Folia Medica Indonesiana. 2017;53(1):1-6.
3.    Panarese, L., Gabriella, A., Andrea, R., Francesco, L., Marco, M., Giuseppe, R, et.al. Oral And Oropharyngeal Squamous Cell Carcinoma: Histopathological Parameters Of Aggressive Behavior. Expert Review Of Anticancer Therapy. 2018. doi: 10.1080/14737140.2019.1561288.
4.    Yao, C., Chang, E., Lai, S. Contemporary Approach To Locally Advanced Oral Cavity Squamous Cell Carcinoma. Current Oncology Reports. 2019;21(99):1-9. doi: 10.1007/s11912-019-0845-8.
5.    Yang, Y., Peipei, Z., Wenlu, L. Comparison Of Orofacial Pain Of Patients With Different Stages Of Precancer And Oral Cancer. Scientific Reports. 2017;7(203):1-5. doi: 10.1038/s41598-017-00370-x.
6.    Bugshan, A., Imran, F. Oral Squamous Cell Carcinoma: Metastasis Potentially Associated Malignant Disorders, Etiology And Recent Advancements In Diagnosis. F1000 Research. 2020; 9(229). doi: 10.12688/f1000research.22941.1.
7.    Dewi, DC., Sudiana IK. Effect of Cayratia trifolia L (Domin) Extract on Reduced Expression of Matrix Metalloproteinase-9 (MMP-9) and Vascular Endothelial Growth Factor-A (VEGF-A) in White Rats with Breast Cancer. Folia Medica Indonesiana. 2016;52(1):35-41.
8.    Lukas Anschuetz, Mohamed Shelan, Marco Dematté, Adrian D. Schubert, Roland Giger & Olgun Elicin. Long-Term Functional Outcome After Laryngeal Cancer Treatment. Radiation Oncology. 2019;14(101):1-8. doi: 10.1186/s13014-019-1299-8.
9.    Ma, Z., NA, W., Haibing, H., Xing, T. Pharmaceutical Strategies Of Improving Oral Systemic Bioavailability Of Curcumin For Clinical Application. Journal Of Controlled Release. 2019;316:359-380. doi: 10.1016/j.jconrel.2019.10.053.
10.    Ma, Y., Chien N., Hsin, C., Fu, S., Jen, J., Kung, W., Ching, L. Quercetin Induce Apoptosis Of Human Oral Cancer SAS Cells Through Mitochondria And Endoplasmic Reticulum Mediated Signaling Pathway. Onco Lett. 2018;15(6):9663-9672. doi: 10.3892/ol.2018.8584.
11.    Khosa, A., Satish, R., Ranendra,  N. Nanostructured Lipid Carriers For Site-Specific Drug Delivery. Biomedicine And Pharmacotherapy. 2018:598-613. doi: 10.1016/j.biopha.2018.04.055.
12.    Prayogo, AA., Wijaya, AY., Hendrata, WM., Looi, SS., I'tishom, R., Hakim, L., Rantam, FA., Sudiana, IK.,  Abdurachman. Dedifferentiation of MCF-7 breast cancer continuous cell line, development of breast cancer stem cells (BCSCs) enriched culture and biomarker analysis', Indonesian Biomedical Journal. 2020;12(2):115-123. https://doi.org/10.18585/inabj.v12i2.977
13.    Nefertiti, EP., Sudiana, IK., Joewarini, E., Harnanik, T., Juliandhy, T. Flavonoids of galing plants (Cayratia trifolia Linn) in animal model of breast cancer: Analysis of COX-2, cyclin D1 and wild type p53. International Medical Journal, 2020; 27(4): 459-463.
14.    Jain, Anshi. Molecular Pathogenesis Of Oral Squamous Cell Carcinoma [Internet]. Intechopen: Licensee Intechopen;2019 [Cited 2021 October 07]. Available From: Https://Www.Researchgate.Net/Publication/333683813_Molecular_Pathogenesis_Of_Oral_Squamous_Cell_Carcinoma. doi: 10.5772/intechopen.85650.
15.    Akagi, Y., Tomoyasu, T., Yorihisa, O., Yuka, G., Hidenori, M., Takuma, M. Et.Al. KRAS Mutation In Tongue Squamous Cell Carcinoma. Acta Oto-Laryngologka. 2019:139(7):647-651. doi: 10.1080/00016489.2019.1610574.
16.    Peng, Q., Zhiyuan, D, Hao, P., Liqun, G., Ousheng, L., Zhangui, T. Mitogen-Activated Protein Kinase Signaling Pathway In Oral Cancer. Oncology Letters. 2018; 15(2):1379-1388. doi: 10.3892/ol.2017.7491.
17.    Harsha, C., Kishore, B., Hui, L., Sosmitha, G., Rajesh, V., Dey, P. et,al. Targeting AKT/mTOR In Oral Cancer: Mechanisms And Advances In Clinical Trials. Int J Mol Sci. 2020;21(9):3285. doi: 10.3390/ijms21093285.
18.    Cuestam C., Cristina, A., Esther, C. The Importance Of Being PI3K In The RAS Signaling Network. Genes (Basel). 2021; 12(7):1094.  doi: 10.3390/genes12071094.
19.    Nair R, Morris A, Billa N, Leong C. An Evaluation Of Curcumin-Encapsulated Chitosan Nanoparticles For Transdermal Delivery. AAPS PharmSciTech. 2019;20(2). doi: 10.1208/s12249-018-1279-6.
20.    Wang T, Chen J. Effects Of Curcumin On Vessel Formation Insight Into The Pro- And Antiangiogenesis Of Curcumin. Evidence-Based Complementary And Alternative Medicine. 2019;2019:1-9. doi: 10.3892/ol.2017.6053.
21.    Tomeh M, Hadianamrei R, Zhao X. A Review Of Curcumin And Its Derivatives As Anticancer Agents. International Journal Of Molecular Sciences. 2019;20(5):1033. doi: 10.3390/ijms20051033.
22.    Hashemzaei M, Far A, Yari A, Heravi R, Tabrizian K, Taghdisi S et al. Anticancer And Apoptosis-Inducing Effects Of Quercetin In Vitro And In Vivo. Oncology Reports. 2017;38(2):819-828. doi: 10.3892/or.2017.5766.
23.    Rauf A, Imran M, Khan I, ur-Rehman M, Gilani S, Mehmood Z et al. Anticancer Potential Of Quercetin: A Comprehensive Review. Phytotherapy Research. 2018;32(11):2109-2130. doi: 10.1002/ptr.6155.
24.    Parhi B, Bharatiya D, Swain S. Application Of Quercetin Flavonoid Based Hybrid Nanocomposites: A Review. Saudi Pharmaceutical Journal. 2020;28(12):1719-1732. doi: 10.1016/j.jsps.2020.10.017.
25.    Rahman H, Othman H, Hammadi N, Yeap S, Amin K, Abdul Samad N et al. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine. 2020; 15: 2439–2483. doi: 10.2147/IJN.S227805.
26.    Chauhan I, Yasir M, Verma M, Singh A. Nanostructured Lipid Carriers: A Groundbreaking Approach For Transdermal Drug Delivery. Advanced Pharmaceutical Bulletin. 2020;10(2):150-165. doi: 10.34172/apb.2020.021.
27.    Garg N, Tandel N, Bhadada S, Tyagi R. Nanostructured Lipid Carrier–Mediated Transdermal Delivery Of Aceclofenac Hydrogel Present An Effective Therapeutic Approach For Inflammatory Diseases. Frontiers In Pharmacology. 2021;12. doi: 10.3389/fphar.2021.713616.
28.    Cortesi R, Valacchi G, Muresan X, Drechsler M, Contado C, Esposito E et al. Nanostructured Lipid Carriers (Nlc) For The Delivery Of Natural Molecules With Antimicrobial Activity: Production, Characterisation And In Vitro Studies. Journal Of Microencapsulation. 2017;34(1):63-72. doi: 10.1080/02652048.2017.1284276.
29.    Borges G, Elias S, Amorim B, Lima C, Coletta R, Castilho R et al. Curcumin Downregulates The Pi3k–Akt–Mtor Pathway And Inhibits Growth And Progression In Head And Neck Cancer Cells. Phytotherapy Research. 2020;34(12):3311-3324. doi: 10.1002/ptr.6780.
30.    Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin Suppresses The Mobility Of Breast Cancer By Suppressing Glycolysis Through Akt-Mtor Pathway Mediated Autophagy Induction. Life Sciences. 2018;208:123-130. doi: 10.1016/j.lfs.2018.07.027.
31.    Chen Y, Liu X, Wang H, Liu S, Hu N, Li X. Akt Regulated Phosphorylation Of Gsk-3β/Cyclin D1, P21 And P27 Contributes To Cell Proliferation Through Cell Cycle Progression From G1 To S/G2m Phase In Low-Dose Arsenite Exposed Hacat Cells. Frontiers In Pharmacology. 2019;10. doi: 10.3389/fphar.2019.01176.14.
32.    Liu S, Liu Z, Zhang L, Zhu H, Guo J, Zhao M et al. Gsk3β-Dependent Cyclin D1 And Cyclin E1 Degradation Is Indispensable For Nvp-Bez235 Induced G0/G1 Arrest In Neuroblastoma Cells. Cell Cycle. 2017;16(24):2386-2395. doi: 10.1080/15384101.2017.1383577.
33.    Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P et al. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. International Journal of Biological Sciences. 2019;15(6):1200-1214. doi: 10.7150/ijbs.33710.
34.    Willenbacher E, Khan S, Mujica S, Trapani D, Hussain S, Wolf D et al. Curcumin: New Insights into an Ancient Ingredient against Cancer. International Journal of Molecular Sciences. 2019;20(8):1808. doi: 10.3390/ijms20081808.
35.    Mansouri K, Rasoulpour S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M et al. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer. 2020;20(1). doi: 10.1186/s12885-020-07256-8.
36.    Mortezaee K, Salehi E, Mirtavoos‐mahyari H, Motevaseli E, Najafi M, Farhood B et al. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. Journal of Cellular Physiology. 2019;234(8):12537-12550. doi: 10.1002/jcp.28122.
37.    Murwanti R, Kholifah E, Sudarmanto B, Hermawan A. Curcumin and its Analogue Targeting β-Catenin and GSK-3β in Wnt Signaling Pathways: In Vitro and In Silico Study. Research Journal of Pharmacy and Technology. 2020;13(4):1715. doi: 10.5958/0974-360X.2020.00309.1.
38.    Nam S, Gupta V, Lee H, Lee J, Wisdom K, Varma S et al. Cell Cycle Progression In Confining Microenvironments Is Regulated By A Growth-Responsive Trpv4-Pi3k/Akt-P27 Kip1 Signaling Axis. Science Advances. 2019;5(8). doi: 10.1126/sciadv.aaw6171.
39.    Tsytlonok M, Sanabria H, Wang Y, Felekyan S, Hemmen K, Phillips A et al. Dynamic Anticipation By Cdk2/Cyclin A-Bound P27 Mediates Signal Integration In Cell Cycle Regulation. Nature Communications. 2019;10(1):1-13. doi: 10.1038/s41467-019-09446-w.
40.    Gao X, Zhang Y, Zhang R, Zhao Z, Zhang H, Wu J et al. Cyclin-dependent Kinase 1 Disruption Inhibits Angiogenesis By Inducing Cell Cycle Arrest And Apoptosis. Experimental And Therapeutic Medicine. 2019; doi: 10.3892/etm.2019.7883.
41.    Chibaya L, Karim B, Zhang H, Jones S. Mdm2 Phosphorylation By Akt Regulates The P53 Response To Oxidative Stress To Promote Cell Proliferation And Tumorigenesis. Proceedings Of The National Academy Of Sciences. 2021;118(4):e2003193118. doi: 10.1073/pnas.2003193118.
42.    Revathidevi S, Munirajan A. Akt In Cancer: Mediator And More. Seminars In Cancer Biology. 2019;59:80-91. doi: 10.1016/j.semcancer.2019.06.002.
43.    Jezek J, Chang K, Joshi AM, Strich R. Mitochondrial Translocation Of Cyclin C Stimulates Intrinsic Apoptosis Through Bax Recruitment. EMBO Reports. 2019;20(9):1–10. doi: 10.15252/embr.201847425.
44.    Banjara S, Suraweera CD, Hinds MG, Kvansakul M. The Bcl-2 Family: Ancient Origins, Conserved Structures, And Divergent Mechanisms. Biomolecules. 2020;10(1):1–21. doi: 10.3390/biom10010128.
45.    Fairlie WD, Tran S, Lee EF. Crosstalk Between Apoptosis And Autophagy Signaling Pathways. International Review Of Cell And Molecular Biology. 2020;352(1);115–158. doi: 10.1016/bs.ircmb.2020.01.003.
46.    Zhang H, Guo Z, Guo Y, Wang Z, Tang Y, Song T, et al. Bim Transfer Between Bcl-2-Like Protein And Hsp70 Underlines Bcl-2/Hsp70 Crosstalk To Regulate Apoptosis. Biochemical Pharmacology. 2021;190(April):114660. doi: 10.1016/j.bcp.2021.114660.
47.    Tungsukruthai S, Reamtong O, Roytrakul S, Sukrong S, Vinayanwattikun C, Chanvorachote P. Targeting AKT/mTOR And Bcl-2 For Autophagic And Apoptosis Cell Death In Lung Cancer: Novel Activity Of A Polyphenol Compound. Antioxidants. 2021;10(4):534. doi: 10.3390/antiox10040534.
48.    Farhan M, Wang H, Gaur U, Little P, Xu J, Zheng W. FOXO Signaling Pathways As Therapeutic Targets In Cancer. International Journal Of Biological Sciences. 2017;13(7):815-827.doi: 10.7150/ijbs.20052.
49.    Wang T, Zhao H, Gao H, Zhu C, Xu Y, Bai L et al. Expression And Phosphorylation Of FOXO1 Influences Cell Proliferation And Apoptosis In The Gastrointestinal Stromal Tumor Cell Line Gist-T1. Experimental And Therapeutic Medicine. 2018;15:3197-3202. doi: 10.3892/etm.2018.5853.
50.    Morris DL, Kastner DW, Johnson S, Strub MP, He Y, Bleck CKE, et al. Humanin Induces Conformational Changes In The Apoptosis Regulator Bax And Sequesters It Into Fibers, Preventing Mitochondrial Outer-Membrane Permeabilization. Journal Of Biological Chemistry. 2019;294(50):19055–65. doi: 10.1074/jbc.RA119.011297.
51.    Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, et al. The Trail To Cancer Therapy: Hindrances And Potential Solutions. Critical Reviews In Oncology/Hematology. 2019;143(December 2018):81–94. doi: 10.1016/j.critrevonc.2019.08.008.
52.    Yamaguchi R, Lartigue L, Perkins G. Targeting Mcl-1 And Other Bcl-2 Family Member Proteins In Cancer Therapy. Pharmacology And Therapeutics. 2019;195:13–20. doi: 10.1016/j.pharmthera.2018.10.009.
53.    García-Heredia JM, Carnero A. Role Of Mitochondria In Cancer Stem Cell Resistance. Cells. 2020;9(7):1–28. doi: 10.3390/cells9071693.
54.    Kehr S, Haydn T, Bierbrauer A, Irmer B, Vogler M, Fulda S. Targeting Bcl-2 Proteins In Pediatric Cancer: Dual Inhibition Of Bcl-Xl And Mcl-1 Leads To Rapid Induction Of Intrinsic Apoptosis. Cancer Letters. 2020;482(February):19–32. doi: 10.1016/j.canlet.2020.02.041.
55.    Liao S, Yang Y, Chen S, Bi Y, Huang Q, Wei Z, et al. IL-24 Inhibits Endometrial Cancer Cell Proliferation By Promoting Apoptosis Through The Mitochondrial Intrinsic Signaling Pathway. Biomedicine And Pharmacotherapy. 2020;124(November 2019):109831. doi: 10.1016/j.biopha.2020.109831.
56.    Giordano, Tommonaro. Curcumin and Cancer. Nutrients. 2019;11(10):2376. doi: 10.3390/nu11102376.
57.    Karthika C, Sureshkumar R, Upadhyay D, K J, C V, Raja M et al. Formulation Development and In vitro Characterization of Solid Self Nano Emulsifying Drug Delivery System for Curcumin to Target Colon Adenocarcinoma. Research Journal of Pharmacy and Technology. 2019;12(7):3338. doi: 10.5958/0974-360X.2019.00563.8.
58.    Niyas F, Savitha G. Metabolic Antioxidant Status in Oral Squamous Cell Carcinoma. Research Journal of Pharmacy and Technology. 2018;11(10):4362. doi: 10.5958/0974-360X.2018.00798.9.
59.    Novitasari D, Jenie R, Wulandari F, Utomo R, Pamungkas Putri D, Kato J et al. Curcumin-like structure (CCA-1.1) induces permanent mitotic arrest (Senescence) on Triple-negative breast cancer (TNBC) cells, 4T1. Research Journal of Pharmacy and Technology. 2021;13(8):4375-4382. doi: 10.52711/0974-360X.2021.00760.
60.    Sanghvi K, Chandrasheker K, Pai V, N A. Review on Curcuma longa: Ethnomedicinal uses, pharmacological activity and phytochemical constituents. Research Journal of Pharmacy and Technology. 2020;13(8):3983. doi: 10.5958/0974-360X.2020.00704.0.
61.    Wang Z, Song T, Guo Z, Uwituze LB, Guo Y, Zhang H, et al. A Novel Hsp70 Inhibitor Specifically Targeting The Cancer-Related Hsp70-Bim Protein-Protein Interaction. European Journal Of Medicinal Chemistry. 2021;220:113452. doi: 10.1016/j.ejmech.2021.113452.
62.    Barot S, Abo-Ali EM, Zhou DL, Palaguachi C, Dukhande V V. Inhibition Of Glycogen Catabolism Induces Intrinsic Apoptosis And Augments Multikinase Inhibitors In Hepatocellular Carcinoma Cells. Experimental Cell Research. 2019;381(2):288–300. doi: 10.1016/j.yexcr.2019.05.017.
63.    Cao X, Wen P, Fu Y, Gao Y, Qi X, Chen B, et al. Radiation Induces Apoptosis Primarily Through The Intrinsic Pathway In Mammalian Cells. Cellular Signalling. 2019;62(March). doi: 10.1016/j.cellsig.2019.06.002.
64.    Cavalcante GC, Schaan AP, Cabral GF, Santana-Da-Silva MN, Pinto P, Vidal AF, et al. A Cell’s Fate: An Overview Of The Molecular Biology And Genetics Of Apoptosis. International Journal Of Molecular Sciences. 2019;20(17):1–20. doi: 10.3390/ijms20174133.
65.    Henry D, Brumaire S, Hu X. Involvement Of pRB-E2F Pathway In Green Tea Extract-Induced Growth Inhibition Of Human Myeloid Leukemia Cells. Leukemia Research. 2019;77(November 2018):34–41. doi: 10.1016/j.leukres.2018.12.014.
66.    Rojas López A, Monzón P, Acerenza L. A Model For The Regulation Of Apoptosis Intrinsic Pathway: The Potential Role Of The Transcriptional Regulator E2F In The Point Of No Return. Journal Of Theoretical Biology. 2021;525. doi: 10.1016/j.jtbi.2021.110765.
67.    Xu X, Lai Y, Hua ZC. Apoptosis And Apoptotic Body: Disease Message And Therapeutic Target Potentials. Bioscience Reports. 2019;39(1):1–17. doi: 10.1042/BSR20180992.
68.    Song M, Bode A, Dong Z, Lee M. AKT As A Therapeutic Target For Cancer. Cancer Research. 2019;79(6):1019-1031. doi: 10.1158/0008-5472.CAN-18-2738.
69.    Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò P, Spandidos D et al. NF-κB Inhibition Is Associated With OPN/MMP-9 Downregulation In Cutaneous Melanoma. Oncology Reports. 2017;37(2):737-746. doi: 10.3892/or.2017.5362.
70.    Raeeszadeh-Sarmazdeh M, Do L, Hritz B. Metalloproteinases And Their Inhibitors: Potential For The Development Of New Therapeutics. Cells. 2020;9(5):1313. doi: 10.3390/cells9051313:10.3390/cells9051313.
71.    Huang H. Matrix Metalloproteinase-9 (MMP-9) As A Cancer Biomarker And Mmp-9 Biosensors: Recent Advances. Sensors. 2018;18(10):3249. doi: 10.3390/s18103249.






Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available