Author(s): Santi Endrawati, Nina Artanti, Muhammad Hanafi


DOI: 10.52711/0974-360X.2022.00873   

Address: Santi Endrawati1,2, Nina Artanti3*, Muhammad Hanafi2,3*
1SMKK Husada Pratama, Serang 42116, Banten, Indonesia.
2Faculty of Pharmacy, Pancasila University, Srengseng Sawah, Jakarta 12640, Indonesia.
3Research Center for Chemistry, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Banten, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022

Kombucha is a fermented drink from herbs that provides many benefits for health, including antioxidant activity. Katuk (Sauropus androgynus (L.) Merr. ) leaves and kelor (Moringa oleifera Lam) leaves are common vegetables in Indonesia, and these plants were reported to contain natural antioxidants. This study aims to examine the antioxidant activity of single and mixture of katuk and kelor leaves before and after fermentation with Kombucha and identify the bioactive compounds of those samples. Katuk and kelor leaves were collected around the Serang Banten area. Antioxidant activity analysis was performed using free radicals DPPH method. Total phenolic content (TPC) and total flavonoids content (TFC) were measured. Compounds identification was conducted using liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that the mixture of katuk and kelor fermented with Kombucha (KoKtKl 3:1) in the 50µl sample had the highest antioxidant activity (80.5% inhibition of DPPH), while under the same conditions, the unfermented sample only had 56.1% DPPH inhibition. Fermentation of katuk and kelor leaves with Kombucha for 7 days decreased pH, and increased antioxidant activity, TPC and TFC. The samples with the highest antioxidant activity (KoKtKl 3:1) were identified as containing kaempferol-3-O-rutinoside, kaempferol-3-O-ß-D-glucopyranoside and quercimetrin, which are flavonoid glycosides that may be responsible for the antioxidant activity. In conclusion, katuk and kelor leaves showed antioxidant activity before and after fermentation with Kombucha, both as single preparations and mixtures which showed the potential to be studied further as a functional beverage for antioxidants.

Cite this article:
Santi Endrawati, Nina Artanti, Muhammad Hanafi. Antioxidant Activity and Compounds Identification of Sauropus androgynus (L.) Merr. and Moringa oleifera Lam Leaves Combination Fermented with Kombucha Consortium. Research Journal of Pharmacy and Technology. 2022; 15(11):5184-1. doi: 10.52711/0974-360X.2022.00873

Santi Endrawati, Nina Artanti, Muhammad Hanafi. Antioxidant Activity and Compounds Identification of Sauropus androgynus (L.) Merr. and Moringa oleifera Lam Leaves Combination Fermented with Kombucha Consortium. Research Journal of Pharmacy and Technology. 2022; 15(11):5184-1. doi: 10.52711/0974-360X.2022.00873   Available on:

1.    Leal JM, et al. A Review on Health Benefits of Kombucha Nutritional Compounds and Metabolites. CyTA - Journal of Food [Internet]. 2018;16(1):390–9. Available from:
2.    Villarreal-Soto SA, et al. Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science. 2018;83(3):580–8. doi: 10.1111/1750-3841.14068
3.    Primiani CN, et al. Kombucha Fermentation Test Used for Various Types of Herbal Teas. Journal of Physics Conference Series. 2018;1025(1). doi :10.1088/1742-6596/1025/1/012073.
4.    Chu SC, Chen C. Effects of Origins and Fermentation Time on the Antioxidant Activities of Kombucha. Food Chemistry. 2006;98(3):502–7. doi:10.1016/j.foodchem.2005.05.080.
5.    Lobo RO, Dias FO, Shenoy CK. Kombucha for Healthy Living: Evaluation of Antioxidant Potential and Bioactive Compounds. International Food Research Journal. 2017;24(2):541–6.
6.    Andarwulan N, et al. Flavonoid Content and Antioxidant Activity of Vegetables from Indonesia. Food Chemistry. 2010;121(4):1231–5. Available from:
7.    Jain N, Goyal S, Ramawat KG. Radical Scavenging Activity and Total Phenolic Content in Selected Fruits and Vegetables. Research Journal of Pharmacy and Technology. 2012;5(1):121–4.;PID=2012-5-1-18.
8.    Gahlot K, Lal VK, Jha S. Total Phenolic Content, Flavonoid Content and In Vitro Antioxidant Activities of Flemingia Species (Flemingia chappar, Flemingia macrophylla and Flemingia strobilifera). Research Journal of Pharmacy and Technology. 2013;6(5):516–23.
9.    Kumar T, Jain V. Phytochemical Screening, Phenolic, Flavonoids, Carotenoids Contents and Antioxidant Activity of Folkloric Memecylon edule roxb. Research Journal of Pharmacy and Technology. 2016;9(10):1547–51. doi: 10.5958/0974-360X.2016.003.
10.    Madhvi SK, et al. Phytochemical Analysis, Total Flavonoid, Phenolic Contents and Antioxidant Activity of Extracts from the Leaves of Rhododendron arboreum. Research Journal of Pharmacy and Technology. 2020;13(4):1701–6. doi: 10.5958/0974-360X.2020.00307.8.
11.    Balasundram N, Sundram K, Samman S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chemistry. 2006;99(1):191–203. doi:10.1016/j.foodchem.2005.07.042.
12.    Pakade V, Cukrowska E, Chimuka L. Comparison of Antioxidant Activity of Moringa oleifera and Selected Vegetables in South Africa. South African Journal of Science. 2013;109(3–4):1–5.
13.    Charde RM, et al. Evaluation of Ethanolic Extract of Moringa oleifera for Wound Healing, Anti-Inflammatory and Antioxidant Activities on Rats. Research Journal of Pharmacy and Technology. 2011;4(2):254–8.
14.    Batmomolin A, et al. Effects of Quercetin and Kaempferol (Main Compound of Moringa oleifera Leaves) Improve IUGR Through Decreased Hypoxia. Research Journal of Pharmacy and Technology. 2020;13(12):5831–6. doi: 10.5958/0974-360X.2020.01016.1.
15.    Benarima A, et al. Influence of Extraction Temperature on The Phenolic Compounds and Antioxidant Capacity from Moringa oleifera Leaves. Asian Journal of Research in Chemistry. 2021;14(2):1-5. Available from: www.ajrconline.org0974-4150. doi: 10.5958/0974-4150.2021.00022.5
16.    Fitriana WD, et al. Antioxidant Activity of Moringa oleifera Extracts. Indonesian Journal of Chemistry. 2016;16(3):297–301.  
17.    Fatmawati S, et al. Fermented Ethanolic Extract of Moringa oleifera Leaves with Lactobacillus plantarum FNCC 0137 as Immunomodulators on Salmonella typhi Infected Mice. Research Journal of Pharmacy and Technology. 2020;13(12):5777–82. doi: 10.5958/0974-360X.2020.01007.0.
18.    Masum NHM, et al. In vitro Antioxidant Activities of Different Parts of the Plant Moringa oleifera Lam. Research Journal of Pharmacy and Technology. 2012;5(12):1532–7.
19.    Pachava VR, et al.  An Updated Review on “Miracle tree”: Moringa oleifera . Research Journal of Pharmacognosy and Phytochemistry. 2018;10(1):101.
20.    Artanti N, et al. Antioxidant Activity of Fermented Broccoli and Spinach by Kombucha Culture. AIP Conference Proceedings. 2017;1904.
21.    Yen GC, Chen HY. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. Journal of Agricultural and Food Chemistry. 1995;43(1):27–32.
22.    Dewi RT, Maryani F. Antioxidant and α-Glucosidase Inhibitory Compounds of Centella asiatica. Procedia Chemistry. 2015;17(January):147–52. Available from:
23.    Hasperué JH, et al. Use of LED Light for Brussels Sprouts Postharvest Conservation. Scientia Horticulturae. 2016;213(1974):281–6
24.    Chang CC, et al. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. Journal of Food and Drug Analysis. 2002;10(3):178–82.
25.    Sinaga NI, Hanafi M, Yantih N. Identification of Chemical Compounds and Antibacterial Activity of 96% Ethanol Extract from Moringa oleifera Lam. Leaves Against MRSA (Methicillin Resistant Staphylococcus Aureus). International Journal of Applied Pharmaceutics. 2021;13(Special Issue 2):111–4. doi:
26.    Maryati Y, et al. Pengaruh Fermentasi Terhadap Aktivitas Antioksidan dan Kadar Betasianin Minuman Fungsional Buah Naga dan Umbi Bit. Jurnal Bioteknol dan Biosains Indonesia. 2020;7(1):48–58.
27.    Hassmy NP, Abidjulu J. Analisis Aktivitas Antioksidan Pada Teh Hijau Kombucha Berdasarkan Waktu Fermentasi Yang Optimal. Pharmacon Jurnal Ilmiah Farmasi.2017;6(4).
28.    Abuduaibifu A, Tamer CE. Evaluation of Physicochemical and Bioaccessibility Properties of Goji Berry Kombucha. Journal of Food Processing Preservation. 2019;43(9):1–14. doi: 10.1111/jfpp.14077.
29.    Christiani Dwiputri M, Lauda Feroniasanti YM. Effect of Fermentation to Total Titrable Acids, Flavonoid and Antioxidant Activity of Butterfly Pea Kombucha. Journal of Physics Conference Series. 2019;1241(1). doi:10.1088/1742-6596/1241/1/012014.
30.    Zubaidah E, et al. Potential of Snake Fruit (Salacca zalacca (Gaerth.) Voss) for the Development of a Beverage Through Fermentation with the Kombucha Consortium. Biocatalysis and Agricultural Biotechnology. 2018;13(September 2017):198–203. Available from:
31.    Sambodo DK. Antioxidant Activity of Sumbawa Red Seaweed (Eucheuma cottonii ) Extract and Lemon Peel (Citrus limon L) Extract Combination Aktivitas Antioksidan Kombinasi Ekstrak Rumput Laut Merah ( Eucheuma cottonii ) Sumbawa dan Ekstrak Kulit Buah Lemon (Citrus limon L). Jurnal Ilmiah Farmasi. 2019;15(2):86–91.
32.    Ivanišová E, et al. Kombucha Tea Beverage: Microbiological Characteristic, Antioxidant Activity, and Phytochemical composition. Acta Alimentaria. 2019;48(3):324–31. doi: 10.1556/066.2019.48.3.7.
33.    Jafari R, et al. Kombucha Microbial Starter with Enhanced Production of Antioxidant Compounds and Invertase. Biocatalysis and Agricultural Biotechnology. 2020;29(September):101789.
34.    Plumb GW, Price KR, Williamson G. Antioxidant Properties of Flavonol Glycosides from Tea. Redox Report. 1999;4(1–2):13–6.
35.    Ahmad M. Effects of Kaempferol-3-O-rutinoside on Rat Blood Pressure. Phytotherapy Research. 1993;7:314–6.
36.    Shin JS, et al. Anti-Inflammatory Effect of Pelubiprofen, 2-[4-(oxocyclohexylidenemethyl)- phenyl]propionic Acid, Mediated by Dual Suppression of COX Activity and LPS-Induced Inflammatory Gene Expression via NF-κB Inactivation. Journal of Cellular Biochemistry. 2011;112(12):3594–603.
37.    Takenaga M,et al. In Vitro Effect of Trichosanic Acid, a Major Component of Trichosanthes Japonica on Platelet Aggregation and Arachidonic Acid Metabolism in Human Platelets. Prostaglandins, Leukotrienes and Essential Fatty Acid. 1988;65–72.
38.    Kamel* SAA and EM. ChemicalL constituents, cytotoxic and antibacterial activities of the aerial parts of Brassica nigra. International Journal of Bioassays. 2013;2(08):1134–8.
39.    Kancheva V, et al. Antioxidant Activity of Extracts, Fractions and Flavonoid Constituents from Carthamus lanatus L. La Rivista Italiana Delle Sostanze Grasse. 2007;84(2):77–86.
40.    Luyen BTT, et al. Anti-Inflammatory Components of Chrysanthemum indicum Flowers. Bioorganic & Medicinal Chemistry Letters. 2015;25(2):266–9.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available