Author(s): Mohamed Mohamed Adel El-Sokkary

Email(s): melsokkary@mans.edu.eg

DOI: 10.52711/0974-360X.2022.00857   

Address: Mohamed Mohamed Adel El-Sokkary
Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
16SrRNA gene sequencing, universally accepted for bacterial identification could not effectively discriminate some closely related Staphylococcal species. For this reason, for bacterial species identification, other DNA sequencing genes are required. In this study, folp gene, encoding DHPS, was tested as a possible and alternative phylogenetic marker for more closely related Staphylococcal species. In this new method, 813 bp were implemented for classification instead of 1447 of 16S rRNA mostly used. Phylogenetic analysis was performed based on DNA sequences obtained from the GenBank including most important Staphylococcal species. As a result, the 16S rRNA-based tree clearly delineated 7 distinct clusters with high bootstrap values (1000) at distance adjusted to 5. Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and Staphylococcus saprophyticus were identified in separate clusters. However, 2 mixed clusters were resolved including Staphylococcus epidermidis and Staphylococcus warneri in one cluster, while Staphylococcus pasteuri and Staphylococcus warneri in the other one. Comparatively, the folp gene-based tree yielded 9 clusters with at distance adjusted to 5 and 1000 bootstrap value. Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus haemolyticus, Staphylococcus ludunensis, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus pasteuri were resolved in separate clusters, however, Staphylococcus warneri and Staphylococcus epidermidis were identified in one mixed cluster. In addition, DNA-DNA relatedness studies indicated high sequence divergence of folp gene exhibiting 61.58-96.48 % interspecies homology compared to 16S rRNA with sequences similarities of 97.09-99.32 %. At the intraspecies level, the nucleotide substitution rates were ranged between 0-25%, mostly at low level for most Staphylococcal species compared to 98.65-99.93 identified in 16S rRNA gene. Moreover, in blind tests, this method was able for correct identification of 13 bacteria isolates of different Staphylococcal species. As a conclusion, folp gene sequences provide better resolution compared to the 16S rRNA gene sequences for both interspecies and interspecies DNA analysis of Staphylococci.


Cite this article:
Mohamed Mohamed Adel El-Sokkary. Molecular Detection of some Staphylococcal species with the newly developed folp gene sequences. Research Journal of Pharmacy and Technology. 2022; 15(11):5099-5. doi: 10.52711/0974-360X.2022.00857

Cite(Electronic):
Mohamed Mohamed Adel El-Sokkary. Molecular Detection of some Staphylococcal species with the newly developed folp gene sequences. Research Journal of Pharmacy and Technology. 2022; 15(11):5099-5. doi: 10.52711/0974-360X.2022.00857   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-42


REFERENCES:
1.    Becker K, Harmsen D, Mellmann A, et al. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol 2004;42(11):4988-95.
2.    Anish C, Ramesh S, Muthusamy M. Development of Multiplex PCR for Staphylococcal Enterotoxin Gene typing and Detection of Enterotoxigenic Staphylococcus aureus. Research J. Pharm. and Tech 2018;11(10 ):4343-4348.
3.    Gururajan G, Srinivasan I, Kaliyaperumal K, Balagurunathan R. SHV and CTX-M Extended Spectrum Beta Lactamases (ESBL) Producing Bacteria Isolated from Street Foods in and around Chennai, India. Research J. Pharm. and Tech 2018 11(3):905-909.
4.    Omran AS, Hussein AN. Detection of Mec cassette gene among coagulase negative Staphylococci isolated from different Clinical Cases. Research J. Pharm. and Tech 2019;12(11):5595-5599.
5.    Veras JF, do Carmo LS, Tong LC, et al. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int J Infect Dis 2008;12(4):410-5.
6.    Aye R, Gautam A, Reyaz A, Vinson H, Gibbs PS. Evaluation of selected toxigenic genes and antimicrobial agent susceptibility in Staphylococcus spp isolated from foods purchased from North Dakota grocery stores. J. Food Nutr. Disor. 2014: 3, 2.
7.    Ruaro A, Andrighetto C, Torriani S, Lombardi A. Biodiversity and characterization of indigenous coagulase-negative staphylococci isolated from raw milk and cheese of North Italy. Food Microbiol 2013;34(1):106-11.
8.    Crass BA, Bergdoll MS. Involvement of coagulase-negative staphylococci in toxic shock syndrome. J Clin Microbiol 1986;23(1):43-5.
9.    Mohanasrinivasan V, Rawat G, Parashar A, Keziah M, A N. Bioprospecting of Clot Buster Enzyme Producing Staphylococcus sp from Bovine Milk Sample. Research J. Pharm. and Tech 2018;11(5):1800-1803.
10.    Kloos WE, Bannerman TL. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 1994;7(1):117-40.
11.    Lecuire F, Gontier D, Carrere J, Basso M, Benareau I, Rubini J. Joint prosthesis infection with Staphylococcus lugdunensis: 7 cases. Rev.Chir. Orthop. Reparatrice Appar. Mot. 2007;93:88–92.
12.    Ruhe J, Menon A, Mushatt D, Dejace P, Hasbun R. Nonepidermidis coagulase-negative staphylococcal bacteremia: clinical predictors of true bacteremia. Eur. J. Clin. Microbiol. Infect. Dis 2004;23:495–498.
13.    Pfaller MA, Jones RN, Doern GV, Kugler K. Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob Agents Chemother 1998;42(7):1762-70.
14.    Richards MJ, Edwards JR, Culver DH, Gaynes RP, et al. Nosocomial infections in medical intensive care units in the United States. Crit. Care Med 1999;27:887–892.
15.    Chu V, et al. Emergence of coagulase-negative staphylococci as a cause of native valve endocarditis. Clin Infect Dis 2008;46:232–242.
16.    Perl TM, Rhomberg PR, Bale MJ, et al. Comparison of identification systems for Staphylococcus epidermidis and other coagulase-negative Staphylococcus species. Diagn Microbiol Infect Dis 1994;18(3):151-5.
17.    Bergeron M, Dauwalder O, Gouy M, et al. Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 2011;30(3):343-54.
18.    Blaiotta G, Fusco V, Ercolini D, Pepe O, Coppola S. Diversity of Staphylococcus species strains based on partial kat (catalase) gene sequences and design of a PCR-restriction fragment length polymorphism assay for identification and differentiation of coagulase-positive species (S. aureus, S. delphini, S. hyicus, S. intermedius, S. pseudintermedius, and S. schleiferi subsp. coagulans). J Clin Microbiol 2010;48(1):192-201.
19.    Grant CE, Sewell DL, Pfaller M, Bumgardner RV, Williams JA. Evaluation of two commercial systems for identification of coagulase-negative staphylococci to species level. Diagn Microbiol Infect Dis 1994;18(1):1-5.
20.    Inan D, Saba R, Yalcin AN, et al. Device-associated nosocomial infection rates in Turkish medical-surgical intensive care units. Infect Control Hosp Epidemiol 2006;27(4):343-8.
21.    Heikens E, Fleer A, Paauw A, Florijn A, Fluit AC. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 2005;43(5):2286-90.
22.    Layer F., Ghebremedhin B., Moder K.A., König W., König B. Comparative study using various methods for identification of Staphylococcus species in clinical specimens. J. Clin. Microbiol 2006;44:2824-2830.
23.    Al-Nashe AAR, Shakir SL. Genotypic Characterization of Staphylococcus spp. Isolated from the bodies of workers in Units of MRI, CAT, X-Ray, Restaurants and Testing Their ability to Biofilms Formation. Research J. Pharm. and Tech 2018;11(10):4245-4251.
24.    Bialkowska-Hobrzanska H, Harry V, Jaskot D, Hammerberg O. Typing of coagulase-negative staphylococci by Southern hybridization of chromosomal DNA fingerprints using a ribosomal RNA probe. Eur J Clin Microbiol Infect Dis 1990;9(8):588-94.
25.    De Buyser ML, Morvan A, Aubert S, Dilasser F, el Solh N. Evaluation of a ribosomal RNA gene probe for the identification of species and subspecies within the genus Staphylococcus. J Gen Microbiol 1992;138(5):889-99.
26.    Maes N, De Gheldre Y, De Ryck R, et al. Rapid and accurate identification of Staphylococcus species by tRNA intergenic spacer length polymorphism analysis. J Clin Microbiol 1997;35(10):2477-81.
27.    Mollet C, Drancourt M, Raoult D. rpoB gene sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 1997;26:1005–1011.
28.    Goh SH, Santucci Z, Kloos WE, et al. Identification of Staphylococcus species and subspecies by the chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin Microbiol 1997;35(12):3116-21.
29.    Kwok AY, Su SC, Reynolds RP, et al. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol 1999;49 Pt 3:1181-92.
30.    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-4680.
31.    Dayhoff M. Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Spring, Maryland 1972.
32.    Eck R, Dayhoff M. Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, Maryland 1966.
33.    Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-791.
34.    Singh A, Goering RV, Simjee S, Foley SL, Zervos MJ. Application of Molecular Techniques to the Study of Hospital Infection. Clinical Microbiology Reviews, 2006;19:512-530.
35.    Fukushima M, Kakinuma K, Kawaguchi R. Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol 2002;40:2779–2785.
36.    AL-Asadi ZHA. Molecular Detection of a Aspergillus niger Isolated from Ear Inflammatory. Research J. Pharm. and Tech 2018;11 (9):3973-3977.
37.    Anand P, Chopra RS, Dhanjal DS, Chopra C. Isolation and Characterization of Microbial Diversity of Soil of Dhanbad Coal Mines using Molecular Approach. Research J. Pharm. and Tech 2019;12(3):1137-1140.
38.    Raju MK, Kapali BSC, Singh GVJJ, Subathra Y, Nithya ADM. Isolation, Characterization and Sequencing of Lactobacillus from the Oral and Fecal Samples of Healthy Dogs. Research J. Pharm. and Tech 2018;11(11):5061-5065.
39.    Jaleel S, Osman KA. Antimicrobial Action of isolated Probiotic Lactobacillus plantarum from Different Fermented Dairy Products from Trabzon City. Research J. Pharm. and Tech 2020;13(5):2445-2451.
40.    von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2:677–85.
41.    Seifert H, Wisplinghoff H, Schnabel P, von Eiff C. Small colony variants of Staphylococcus aureus and pacemaker-related infection. Emerg Infect Dis 2003;9(10):1316-8.
42.    Hussein SaN, Bdaiwi QO, Auda IG, Kareem AA. Superantigenic Toxin Genes in Some Methicillin Resistant Coagulase Negative Staphylococci. Research J. Pharm. and Tech 2019;12(9):4480-4484.
43.    Taponen S, Simojoki H, Haveri M, Larsen HD, Pyorala S. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet Microbiol 2006;115(1-3):199-207.
44.    Svec P, Vancanneyt M, Sedlacek I, et al. Reclassification of Staphylococcus pulvereri Zakrzewska-Czerwinska et al. 1995 as a later synonym of Staphylococcus vitulinus Webster et al. 1994. Int J Syst Evol Microbiol 2004;54:2213–2215.
45.    Ghebremedhin B, Layer F, Konig W, Konig B. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 2008;46(3):1019-25.
46.    Martineau F, Picard FJ, Ke D, et al. Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 2001;39(7):2541-7.
47.    Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 2002;40(4):1333-8.
48.    Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 2001;39(12):4296-301.
49.    Yugueros J, Temprano A, Berzal B, et al. Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a useful taxonomic tool for Staphylococcus spp. J Clin Microbiol 2000;38(12):4351-5.
50.    Shah MM, Iihara H, Noda M, et al. dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 2007;57(Pt 1):25-30.



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available