Author(s): Mamta Gokhale, Rumana Faraz, Isha Deshpande, Ashish Garg

Email(s): ashish.garg071010@gmail.com

DOI: 10.52711/0974-360X.2022.00849   

Address: Mamta Gokhale1, Rumana Faraz2, Isha Deshpande2, Ashish Garg3*
1Department of Botany and Microbiology, St. Aloysius College (Autonomous) Sadar Cantt., Sadar, Jabalpur - M.P., India-482001.
2Biodesign Innovation Center, St. Aloysius College (Autonomous) Sadar Cantt., Sadar, Jabalpur - M.P., India- 482001.
3Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Pachpedi, Jabalpur, M.P., India 482001.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Newly emerged COVID-19 performs its activity through spike protein receptor binding domain (RBD). A strong competitive binding on this site can inhibit the COVID-19 (SARS-CoV-2) activity against host cells. A significant plant bioactive molecule, Baicalein (5,6,7-Trihydroxyflavone), has noteworthy effects on viral S protein. The biomolecule was isolated from an endangered medicinal tree Oroxylum indicum L. Vent. Therapeutic use various parts of Oroxylum have been mentioned in ancient literature, Ayurveda and is also being used a folklore medicine in many tribal areas of India. Molecular docking has been applied to screen the binding pattern and bond strength of biomolecule with ten amino acids. The binding site was defined with site findder algorithm. The residues were found Arg403, Glu406, Lys417, Tyr453, Ser494, Tyr495, Gly496, Phe497, Asn501, Tyr505. The biomolecule Baicalein showed effective binding capacity towards active site residues of SARS-CoV-2 spike receptor-binding domain. It was found to have a strong binding affinity with RBD of S-protein of viral residues with high negative binding free energy (-12.5545 kcal/mol). Such competitive interruption of hydrogen bond formation between the viral S- protein and biomolecules’ active sites would inhibit the potency of COVID-19 infectivity.


Cite this article:
Mamta Gokhale, Rumana Faraz, Isha Deshpande, Ashish Garg. Isolation of bio-molecule Baicalein (5, 6, 7-Trihydroxy flavone) from root of Oroxylum indicum L. Vent and its prospective interaction with COVID-19 Viral S-Protein Receptor Binding Domain. Research Journal of Pharmacy and Technology. 2022; 15(11):5050-6. doi: 10.52711/0974-360X.2022.00849

Cite(Electronic):
Mamta Gokhale, Rumana Faraz, Isha Deshpande, Ashish Garg. Isolation of bio-molecule Baicalein (5, 6, 7-Trihydroxy flavone) from root of Oroxylum indicum L. Vent and its prospective interaction with COVID-19 Viral S-Protein Receptor Binding Domain. Research Journal of Pharmacy and Technology. 2022; 15(11):5050-6. doi: 10.52711/0974-360X.2022.00849   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-34


REFERENCES
1.    Xu X. Chen P. Wang J. Feng J. Zhou H. Li X. Zhong W et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China. Life Science. 2020; 63(3):457-460. doi: 10.1007/s11427-020-1637-5
2.    Menon S. Bhagat V. Review of the impact Covid-19 has on the Psychosocial factors affecting Well-Being. Research Journal of Pharmacy and Technology. 2021; 14(6):3404-8. doi: 10.52711/0974-360X.2021.00592
3.    Zhu N. Zhang D. Wang W. Li X. Yang B. Song J, Zhao X et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine. 2020; 382(8):727-733. doi:10.1056/NEJMoa2001017
4.    Pinki, Rani D. Bajaj H. Singh R. SARS-COV-2 (COVID-19) and role of real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) in its diagnosis. Research Journal of Pharmacy and Technology. 2021; 14(6):3437-0. doi: 10.52711/0974-360X.2021.00598
5.    Mor S. Saini P. Wangnoo SK. Bawa T. Worldwide spread of COVID-19 Pandemic and risk factors among Co-morbid conditions especially Diabetes Mellitus in India. Research Journal of Pharmacy and Technology. 2020; 13(5):2530-2532. doi: 10.5958/0974-360X.2020.00450.3
6.    Shu Y. McCauley J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Euro Surveillance. 2017; 22(13): 30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494
7.    Chen Y. Liu Q. Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology. 2020; 92(4):418-423. doi: 10.1002/jmv.25681
8.    Ahmad S. Shoaib A. Ali S. Alam S. Alam N. Ali M. Mujtaba A et al. Epidemiology, risk, myths, pharmacotherapeutic management and socio economic burden due to novel COVID-19: A recent update. Research Journal of Pharmacy and Technology. 2020; 13(9):4435-4442. doi: 10.5958/0974-360X.2020.00784.2
9.    Ayoub A. Fatima N. Kaushik V. Pulmonary Aerosolized Formulation or Nasal Drops containing Recombinant Human Angiotensin converting Enzyme 2 (rhACE2) as a Potential Therapy against COVID-19. Research Journal of Pharmacy and Technology. 2021; 14(6):3433-6. doi: 10.52711/0974-360X.2021.00597   
10.    Kumar V. Kancharla S. Jena MK. In silico screening of FDA approved drugs predicts the therapeutic potentials of Antibiotic drugs against the papain like protease of SARS-CoV-2. Research Journal of Pharmacy and Technology. 2021; 14(8):4035-9. doi: 10.52711/0974-360X.2021.00699
11.    Chan JF, To KK, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends in Microbiology. 2013; 21(10):544–555. doi: https://doi.org/10.1016/j.tim.2013.05.005
12.    Zhou P. Yang XL. Wang XG. Hu B. Zhang L. Zhang W. Si HR et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv 2020. doi: https://doi.org/10.1101/2020.01.22.914952
13.    Wu F. Zhao S. Yu B. Chen Y.M. Wang W. Song Z.G. Hu Y. Tao ZW et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798): 265- 269. doi: https://doi.org/10.1038/s41586-020-2008-3
14.    Ghosh AK. Xi K. Ratia K. Santarsiero BD. Fu W. Harcourt B.H. Rota PA et al. Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors. Journal of Medicinal Chemistry. 2005; 48(22): 6767-6771. doi: https://doi.org/10.1021/jm050548m
15.    Kumar V. Tan KP. Wang YM. Lin SW. Liang PH. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorganic and medicinal chemistry 2016; 24(13):3035-3042. doi: https://doi.org/10.1016/j.bmc.2016.05.013
16.    Khwaza V. Oyedeji. Aderibigbe BA. Antiviral activities of oleanolic acid and its analogues. Molecules. 2018; 23(9):2300. doi: 10.3390/molecules23092300
17.    Karnati M. Chandra RH. Veeresham C. Kishan B. Anti-arthritic activity of root bark of Oroxylum indicum (L.) vent against adjuvant-induced arthritis. Pharmacognosy Research. 2013; 5(2):121. doi: https://doi.org/10.4103/0974-8490.110543
18.    Deka DC. Kumar V. Prasad C.  Kumar K. Gogoi BJ. Singh L. Shrivastava RB. Oroxylum indicum–a medicinal plant of North East India: An overview of its nutritional, remedial, and prophylactic properties. Journal of Applied Pharmaceutical Science. 2013; 3(4): S104-S112. doi: 10.7324/JAPS.2013.34.S19
19.    Srinivas KS. Aparna AS. High Performance Thin Layer Chromatographic determination of chrysin in Oroxylum indicum vent. from different geographical regions of India. E-Journal of Chemistry. 2012; 9(1):313-317. doi: https://doi.org/10.1155/2012/616431
20.    Singh J. Kakkar P. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum Indicum stem bark in STZ induced diabetic rats. Food and Chemical Toxicology. 2013; 62:722-731. doi: 10.1016/j.fct.2013.09.035
21.    Dev LR and Anurag M. Rajiv G. Oroxylum indicum: A review. Pharmacognosy Journal 2010; 2(9):304- 310. doi: 10.1016/S0975-3575(10)80121-X
22.    Pagadala NS. Syed K. Tuszynski J. Software for molecular docking: a review. Biophysical Reviews. 2017; 9(2):91-102. doi: 10.1007/s12551-016-0247-1
23.    Ramjith US. Muhammed S. Molecular Docking Study of Novel Imidazo[2,1-b]-1,3,4 thiadiazole derivatives. Research Journal of Pharmacy and Technology. 2013; 6(6):688-694.
24.    Chauhan R. Singh N. Abraham J. Bioactivity and Molecular Docking of Secondary Metabolites produced by Streptomyces xanthochromogenes JAR5. Research Journal of Pharmacy and Technology. 2015; 8(3):300-309. doi: 10.5958/0974-360X.2015.00050.5
25.    Misra PS. Ravichandiran V. Aanandhi MV. Design, Synthesis and In Silico Molecular Docking Study of N-carbamoyl-6-oxo-1-phenyl-1, 6-dihydropyridine-3-carboxamide derivatives as Fibroblast growth factor 1 inhibitor. Research Journal of Pharmacy and Technology. 2017; 10(8):2527-2534. doi: 10.5958/0974-360X.2017.00447.4
26.    Harsha NS. Juan RS. Satish RT. Kumar GS. Analysis of the Evolutionary pattern of SARS-CoV-2 and its implications in the spread of the disease. Research Journal of Pharmacy and Technology. 2021; 14(4):2229-2. doi: 10.52711/0974-360X.2021.00396
27.    Dar AM. Mir S. Molecular docking: approaches, types, applications and basic challenges. Journal of Analytical and Bioanalytical Technique. 2017; 8(2):356. doi: 10.4172/2155-9872.1000356
28.    Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Seperation Science. 2007; 30(18):3268-3295. doi: 10.1002/jssc.200700261.\
29.    Meena MC. Patni V. Isolation and identification of flavonoid "quercetin" from Citrullus colocynthis (Linn.) Schrad. Asian Journal of Experimental Science. 2008; 22(1):137-142.
30.    Mishra S. Dahima R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. Journal of Drug Delivery and Therapeutics. 2019; 9(2-s):366-369. doi: https://doi.org/10.22270/jddt.v9i2-s.2710
31.    Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017; 7(1):1-13. doi: https://doi.org/10.1038/srep42717
32.    Lipinski CA. Lombardo F. Dominy BW. Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 1997;  23(1-3):3-25. doi: 10.1016/s0169-409x(00)00129-0
33.    Lalani S. Poh CL. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 2020; 12(2):184. doi: 10.3390/v12020184
34.    Moghaddam E. Teoh BT. Sam SS. Lani R. Hassandarvish P. Chik Z. Yueh A. Abubakar S. Zandi K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Scientific Reports. 2014; 4:5452. doi: 10.1038/srep05452
35.    Zandi K. Teoh BT. Sam SS. Wong PF. Mustafa MR. Abubakar S. Novel antiviral activity of baicalein against dengue virus. BMC Complementary and Alternative Medicine. 2012; 12(1):1-9. doi: https://doi.org/10.1186/1472-6882-12-214
36.    Oo A. Teoh BT. Sam SS. Bakar SA. Zandi K. Baicalein and baicalin as Zika virus inhibitors. Archives of Virology. 2019; 164(2):585-593. doi: https://doi.org/10.1007/s00705-018-4083-4
37.    Dossetter AG. Griffen EJ. Leach AG. Matched molecular pair analysis in drug discovery.Drug Discovery Today 2013; 18(15-16):724-731. doi: 10.1016/j.drudis.2013.03.003
38.    Medina-Franco JL. Saldívar-González FI .Cheminformatics to Characterize Pharmacologically Active Natural Products. Biomolecules. 2020; 10(11):1566. doi: 10.3390/biom10111566
39.    Mustafa G. Majid M. Ghaffar A. Yameen M. Samad HA. Mahrosh HS. Screening and molecular docking of selected phytochemicals against NS5B polymerase of hepatitis C virus. Pakistan Journal of Pharmaceutical Sciences. 2020; 33(5):2317-2322.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available