Author(s): Sri Windananti, Mustanir Yahya, Binawati Ginting, Nurdin Saidi

Email(s): mustanir_yahya@unsyiah.ac.id

DOI: 10.52711/0974-360X.2022.00847   

Address: Sri Windananti, Mustanir Yahya*, Binawati Ginting, Nurdin Saidi
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Cocoa pod husk (Theobroma cacao L.) is an emerging source of bioactive compounds, revealed to possess anti-cancer potential by several reports. Herein, we aimed to investigate the antiproliferative and antioxidant activities of chloroform soluble (TCC) along with its 11 fractions (TCC1-11) obtained following the methanolic maceration of cocoa pod husk. Firstly, air-dried simplicial powder of cocoa pod husk was macerated using methanol and subsequently partitioned using n-hexane, ethyl acetate, and acetone. The insoluble part was then hydrolyzed with HCl (6%) and followed by further separation using chloroform yielding TCC (0.712 g; 0.93% w/w). Fractionation was further carried out using n-hexane and ethyl acetate solvents with an elution gradient system. TCC was revealed to have cytotoxicity against A. salina with LC50 equals to 105.04 mg/L, and the LC50s of its fractions ranged from 1.42 to 10.67 mg/L. Based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of TCC, the IC50 was obtained as low as 4.56 mg/L. Relatively less potent antioxidant activities were shown by the TCC1-11, where the IC50s were ranged from 284.478 to 37.909 mg/L. The highest anticancer potential was TCC10 (LC50 = 1.42 mg/L). With such anti-cancer potential, more investigations on the TCC and its fraction are required to determine the phytocompound profiles as well as the anti-cancer mechanism.


Cite this article:
Sri Windananti, Mustanir Yahya, Binawati Ginting, Nurdin Saidi. Antiproliferative and Antioxidant Activities of Chloroform Soluble and its Fractions Obtained from Methanolic Extract of Cocoa pod Husk. Research Journal of Pharmacy and Technology. 2022; 15(11):5038-2. doi: 10.52711/0974-360X.2022.00847

Cite(Electronic):
Sri Windananti, Mustanir Yahya, Binawati Ginting, Nurdin Saidi. Antiproliferative and Antioxidant Activities of Chloroform Soluble and its Fractions Obtained from Methanolic Extract of Cocoa pod Husk. Research Journal of Pharmacy and Technology. 2022; 15(11):5038-2. doi: 10.52711/0974-360X.2022.00847   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-32


REFERENCES:
1.    Picchioni F.  Warren GP.  Lambert S.  Balcombe K.  Robinson JS.  Srinivasan CD. Gomez L.  et al Valorisation of Natural Resources and the Need for Economic and Sustainability Assessment: The Case of Cocoa Pod Husk in Indonesia. Sustainability. 2020; 12(21):8962. doi.org/10.3390/su12218962
2.    Valadez-Carmona L.  Ortiz-Moreno A.  Ceballos-Reyes G. Mendiola JA. Ibáñez E. Valorization of Cacao Pod Husk Through Supercritical Fluid Extraction of Phenolic Compounds. The Journal of Supercritical Fluids. 2018; 131:99-105. doi.org/10.1016/j.supflu.2017.09.011
3.    Lu F.  Rodriguez-Garcia J.  Van Damme I.  Westwood NJ.  Shaw L. Robinson JS. Warren G.  et al Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Current Opinion in Green and Sustainable Chemistry. 2018; 14:80-88. doi.org/10.1016/j.cogsc.2018.07.007
4.    Campos-Vega R. Nieto-Figueroa KH. Oomah BD. Cocoa (Theobroma cacao L.) Pod Husk: Renewable Source of Bioactive Compounds. Trends in Food Science and Technology. 2018; 81:172-184. doi.org/10.1016/j.tifs.2018.09.022
5.    Martínez R. Torres P. Meneses MA. Figueroa JG.  Pérez-Álvarez JA. Viuda-Martos M. Chemical, Technological and In Vitro Antioxidant Properties of Cocoa (Theobroma cacao L.) Co-Products. Food Research International. 2012; 49(1):39-45. doi.org/10.1016/j.foodres.2012.08.005
6.    Valadez-Carmona L.  Plazola-Jacinto CP. Hernández-Ortega M. Hernández-Navarro MD. Villarreal F. Necoechea-Mondragón H. Ortiz-Moreno A. et al Effects of Microwaves, Hot Air and Freeze-Drying on The Phenolic Compounds, Antioxidant Capacity, Enzyme Activity and Microstructure of Cacao Pod Husks (Theobroma cacao L.). Innovative Food Science & Emerging Technologies. 2017; 41:378-386. doi.org/10.1016/j.ifset.2017.04.012
7.    Hemalatha CN. Anbarasu K. Vijey AM. Evaluation of Anti-Cancer and Anti-Oxidant Activity of Cissus quandrangularis Extracts in DMBA Induced Mammary Carcinomas. Research J. Pharm. and Tech. 2017; 30(1): 293-300. doi.org/ 10.5958/0974-360X.2017.00060.9  
8.    Kumar S.  Nair R.  Gupta S.  Abdullah A.  Talwar P. Ravanan P. Anti-Cancer and Neuro-Protective Effect of Cuminum cyminum Extracts on IMR32 Human Neuroblastoma Cell Lines. Research J. Pharm. and Tech. 2018; 11(4):1547-1552. doi.org/10.5958/0974-360X.2018.00288.3
9.    Deeparani K.  Urolagin U. Jayakumari S. In Vitro Anti-Cancer Study of Vitis viniferae, Ixora coccinea and Piper longum Ethanolic Extracts on Human Breast Carcinoma Cells. Research J. Pharm. and Tech. 2018; 11(12):5345-5347. doi.org/10.5958/0974-360X.2018.00973.3  
10.    Karpagam T.  Jannathul F.  Revathy R.  Shanmuga P. Varalakshmi B. Gomathi S. Geetha S. et al Anti-Cancer Activity of Aloe vera Ethanolic Leaves Extract against In Vitro Cancer Cells. Research J. Pharm. and Tech. 2019; 12(5):2167-2170. doi.org/10.5958/0974-360X.2019.00360.3
11.    Mustanir M. Nurdin N. Ginting B. Purnama A. Chemical Composition and Cytotoxic Activities of n-Hexane Extract from Cacao Pod Husk (Theobroma cacao L.). Chemical Data Collections. 2020; 30:100553. doi.org/10.1016/j.cdc.2020.100553
12.    Chusniasih D. Tutik T. Aktivitas Antikanker Ekstrak Aseton Kulit Buah Kakao (Theobroma cacao L.) terhadap Sel Vero dan MCF-7 secara In-Vitro. Jurnal Analis Kesehatan. 2020; 9(2):35-40. doi.org/10.26630/jak.v9i2.2458
13.    Bacon K. Boyer R. Denbow C. O'Keefe S. Neilson A. Williams R. Evaluation of Different Solvents to Extract Antibacterial Compounds from Jalapeno Peppers. Food Sci Nutr. 2017; 5(3):497-503. doi.org/10.1002/fsn3.423
14.    Astalakshmi N. Sundara G. In Vitro Cytotoxicity Studies on Methanolic Leaf Extract of Mussaenda erythrophylla Schumach. and Thonn. Research J. Pharm. and Tech. 2020; 13(2):831-839. doi.org/10.5958/0974-360X.2020.00157.2  
15.    Khadeerunnisa S. Kumar S.  Rajaram C.  Manohar R. Reddy KR. Evaluation of Antiulcer Activity of Methanolic Extract of Barleria buxifolia in Experimental Rats. 2020; 13(2):533-537. doi.org/10.5958/0974-360X.2020.00101.8
16.    Cane HPCA.  Saidi N.  Yahya M.  Darusman D. Erlidawati E.  Safrida S. Musman M. Macrophylloflavone: A New Biflavonoid from Garcinia macrophylla Mart. (Clusiaceae) for Antibacterial, Antioxidant, and Anti-Type 2 Diabetes Mellitus Activities. Scientific World Journal. 2020; 2020:2983129. doi.org/10.1155/2020/2983129
17.    Sharma V. Wadhwa S. Lobo R. Gupta P. Amini M. Kaur J. Suttee A. Biological and Phytochemical Studies on The Leaves of Caesalpinia decapetala (Roth). Research J. Pharm. and Tech. 2017; 10(11):4005-4010. doi.org/10.5958/0974-360X.2017.00726.0  
18.    Amini M. Kalsi V. Kaur B. Gopal L. Khatik K. Lobo R. Singh G. et al Phytochemical Screening and Antioxidant Activity of Heracleum afghanicum Kitamura Leaves. Research J. Pharm. and Tech. 2017; 10(10):3498-3502. doi.org/10.5958/0974-360X.2017.00626.6   
19.    Arivukkarasu R. Rajasekaran A. Kankaria V. Selvam M. In Vitro Anti-Cancer Activity and Detection of Quercetin, Apigenin in Methanol Extract of Euphorbia nivulia Buch.-Ham. By HPTLC Technique. Research J. Pharm. and Tech. 2017; 10(8):2637-2640. doi.org/10.5958/0974-360X.2017.00468.1
20.    Nguyen H. Nguyen D. Nguyen T. Biological Activities of Poly (Lactic Acid) Polymer Produced from Lactobacillus rhamnosus PN04. Research J. Pharm. and Tech. 2018; 11(7):3057-3062. doi.org/10.5958/0974-360X.2018.00562.0
21.    Chávez-González ML.  Sepúlveda L.  Verma DK.  Luna-García HA. Rodríguez-Durán LV.  Ilina A. Aguilar CN. Conventional and Emerging Extraction Processes of Flavonoids. Processes. 2020; 8(4):434. doi.org/10.3390/pr8040434
22.    Preethimol F. Suseem S. Phytochemical Analysis and Anti-Inflammatory Screening of Strychnos colubrina Linn. Research J. Pharm. and Tech. 2016; 9(2):165-169. doi.org/10.5958/0974-360X.2016.00029.9
23.    Tungmunnithum D.  Thongboonyou A.  Pholboon A. Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines. 2018; 5(3):93. doi.org/10.3390/medicines5030093
24.    Alvarez DV.  Hernández MS.  Hernández VAG.  Engleman EM. Damián Nava A. Flavonoids in Psidium guajava L. leaves. Horticulture International Journal. 2021; 5(1):38-41. doi.org/10.15406/hij.2021.05.00201
25.    Hasballah K.  Sarong M.  Rusly R.  Fitria H.  Maida DR. Iqhrammullah M. Antiproliferative Activity of Triterpenoid and Steroid Compounds from Ethyl Acetate Extract of Calotropis gigantea Root Bark against P388 Murine Leukemia Cell Lines. Scientia Pharmaceutica. 2021; 89(2):21. doi.org/10.3390/scipharm89020021
26.    Lim V. Ismail NZ. Arsad H. Modarresi Chahardehi A. Low Cytotoxicity and Antiproliferative Activity on Cancer Cells of The Plant Senna alata (Fabaceae). Revista de Biología Tropical. 2021; 69(1):317-330. doi.org/10.15517/rbt.v69i1.42144
27.    Niksic H. Becic F. Koric E. Gusic I. Omeragic E. Muratovic S. Miladinovic B. et al Cytotoxicity Screening of Thymus vulgaris L. Essential Oil in Brine Shrimp Nauplii and Cancer Cell Lines. Sci Rep. 2021; 11(1):13178. doi.org/10.1038/s41598-021-92679-x
28.    Umri RJ. Maulana I. Ginting B. Antioxidant and Cytotoxic Activity of Ethyl Acetate Extracts of Cocoa Pod Husk (Theobroma cacao L). IOP Conference Series: Earth and Environmental Science. 2019; 364:012026. doi.org/10.1088/1755-1315/364/1/012026
29.    Kayaputri IL. Sumanti DM. Djali M. Indiarto R. Dewi DL. Kajian Fitokimia Ekstrak Kulit Biji Kakao (Theobroma cacao L.). Chimica et Natura Acta. 2014; 2(1):83–90. doi.org/10.24198/cna.v2.n1.9140
30.    Zaynab M. Sharif Y. Abbas S. Afzal MZ. Qasim M. Khalofah A. Ansari MJ. et al Saponin Toxicity as Key Player in Plant Defense against Pathogens. Toxicon. 2021; 193:21-27. doi.org/10.1016/j.toxicon.2021.01.009
31.    Chikara S. Nagaprashantha LD. Singhal J. Horne D. Awasthi S. Singhal SS. Oxidative Stress and Dietary Phytochemicals: Role in Cancer Chemoprevention and Treatment. Cancer Lett. 2018; 413:122-134. doi.org/ 10.1016/j.canlet.2017.11.002
32.    Sagar NA. Pareek S. Gonzalez-Aguilar GA. Quantification of Flavonoids Total Phenols and Antioxidant Properties of Onion Skin: A Comparative Study of Fifteen Indian Cultivars. J Food Sci Technol. 2020; 57(7):2423-2432. doi.org/ 10.1007/s13197-020-04277-w
33.    Nurcholis W. Sya'bani Putri DN. Husnawati H. Aisyah SI. Priosoeryanto BP. Total Flavonoid Content and Antioxidant Activity of Ethanol and Ethyl Acetate Extracts from Accessions of Amomum compactum Fruits. Annals of Agricultural Sciences. 2021; 66(1):58-62. doi.org/10.1016/j.aoas.2021.04.001
34.    Russo GL. Tedesco I. Spagnuolo C. Russo M. Antioxidant Polyphenols in Cancer Treatment: Friend Foe or Foil? Semin Cancer Biol. 2017; 46:1-13. doi.org/10.1016/j.semcancer.2017.05.005
35.    Eghbaliferiz S. Iranshahi M. Prooxidant Activity of Polyphenols Flavonoids Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother Res. 2016; 30(9):1379-1391. doi.org/10.1002/ptr.564
36.    Trachootham D. Alexandre J. Huang P. Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nat Rev Drug Discov. 2009; 8(7):579-591. doi.org/10.1038/nrd2803
37.    Rahmi R.  Iqhrammullah M.  Audina U.  Husin H. Fathana H. Adsorptive Removal of Cd (II) Using Oil Palm Empty Fruit Bunch-Based Charcoal/Chitosan-EDTA Film Composite. Sustain Chem Pharm. 2021; 21:100449. doi.org/10.1016/j.scp.2021.100449
38.    Safitri E. Humaira H. Murniana M. Nazaruddin N. Iqhrammullah M. Md Sani ND Esmaeili C. et al Optical pH Sensor Based on Immobilization Anthocyanin from Dioscorea alata L. onto Polyelectrolyte Complex Pectin-Chitosan Membrane for a Determination Method of Salivary pH. Polymers. 2021; 13(8):1276. doi.org/ 10.3390/polym13081276
39.    Nazaruddin N. Afifah N. Bahi M. Susilawati S. Md Sani ND. Esmaeili C. Iqhrammullah M. et al A Simple Optical pH Sensor Based on Pectin and Ruellia tuberosa L-Derived Anthocyanin for Fish Freshness Monitoring. F1000Res 2021; 10:422. doi.org/10.12688/f1000research.52836.2

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available