Author(s): Desi Sandra Sari, Neira Sakinah, Nuri, Enny Suswati3, Retno Widyowati, Ernie Maduratna

Email(s): desi_sari.fkg@unej.ac.id

DOI: 10.52711/0974-360X.2022.00841   

Address: Desi Sandra Sari1, Neira Sakinah1, Nuri2, Enny Suswati3, Retno Widyowati4, Ernie Maduratna5
1Department of Periodontic, Faculty of Dentistry, University of Jember, Jember, Indonesia.
2Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Jember, Jember, Indonesia.
3Department of Microbiology, Faculty of Medicine, University of Jember, Jember, Indonesia.
4Department Fitokimia & Farmakognosi, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia.
5Department of Periodontic, Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Background: Robusta coffee beans contain very high chlorogenic acid. In the last decade, chlorogenic acid was developed as an adjunct in stem cells to enhance the anti-inflammatory and antioxidant properties of stem cells when used as a therapeutic agent. Chlorogenic acid can increase proliferation and migration and inhibit the production of pro-inflammatory cytokines in stem cells thereby increasing the ability of stem cells to regenerate tissue. Purpose: To analyze the levels of chlorogenic acid in robusta coffee bean extract which can be used as a combination agent for Dental Pulp Stem Cells (DPSC) in periodontal tissue engineering therapy. Materials and Methods: Robusta coffee bean extract was obtained from the Coffee and Cocoa Research Center, Jember Regency which was processed and processed using the fractionation method. This study used DPSC with the extraction of premolar teeth of orthodontic patients. The toxicity test was performed on the coffee extract 0.0625%; 0.125%; 0.25%; 0.5% to determine the biocompatible concentration of DPSC. Results: The highest fractionation and measurement of chlorogenic acid content obtained was 30.49%. Robusta coffee bean extract with a chlorogenic acid content of 30.49% at concentrations of 0.125% and 0.0625% did not cause toxicity to DPSC. Conclusion: Chlorogenic acid in robusta coffee bean extract concentrations of 0.125% and 0.0625% are relatively biocompatible as a combination agent for DPSC in periodontal tissue engineering therapy.


Cite this article:
Desi Sandra Sari, Neira Sakinah, Nuri, Enny Suswati3, Retno Widyowati, Ernie Maduratna. Chlorogenic Acid Fractionation in Robusta Green Bean Extract as a Combination Agent of Dental Pulp Stem Cells in Periodontal Tissue Engineering. Research Journal of Pharmacy and Technology. 2022; 15(11):5005-0. doi: 10.52711/0974-360X.2022.00841

Cite(Electronic):
Desi Sandra Sari, Neira Sakinah, Nuri, Enny Suswati3, Retno Widyowati, Ernie Maduratna. Chlorogenic Acid Fractionation in Robusta Green Bean Extract as a Combination Agent of Dental Pulp Stem Cells in Periodontal Tissue Engineering. Research Journal of Pharmacy and Technology. 2022; 15(11):5005-0. doi: 10.52711/0974-360X.2022.00841   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-26


REFERENCES:
1.    Kiattisin K, Nantarat T, Leelapornpisid P. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. J Pharmacogn Phyther. 2016. doi:10.5897/JPP2016.0413
2.    Budiman A, Lutfi A, Muchtaridi M. The Stability of Clorogenic Acid in Syrup Coffe Arabica (Coffea Arabica L.) Extract With Deffaceination Process . Asian J Pharm Clin Res. 2017.Special Issue (May):1-5.doi: 10.22159/ajpcr.2017.v10s2.19469
3.    Farhaty N. Tinjauan Kimia dan Aspek Farmakologi Senyawa Asam Klorogenat pada Biji Kopi : Review. Farmaka Suplemen. 2018.
4.    Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015;8(1):1-20. doi:10.3390/nu8010016
5.    Farah A, dePaula Lima J. Consumption of Chlorogenic Acids through Coffee and Health Implications. Beverages. 2019. 5(11):1-29. doi:10.3390/beverages5010011
6.    Naveed M, Hejazi V, Abbas M, et al.  Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother. 2018 Jan;97:67-74. doi: 10.1016/j.biopha.2017.10.064.
7.    Gao R, Yang H, Jing S, et al. Protective effect of chlorogenic acid on lipopolysaccharide-induced inflammatory response in dairy mammary epithelial cells. Microb Pathog. 2018;124:178-182. doi:10.1016/j.micpath.2018.07.030
8.    Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide- stimulated RAW 264.7 cells. Inflamm Res. 2014;63(1):81-90. doi:10.1007/s00011-013-0674-4
9.    Liu CC, Zhang Y, Dai BL, et al. Chlorogenic acid prevents inflammatory responses in IL-1β-stimulated human SW-1353 chondrocytes, a model for osteoarthritis. Mol Med Rep. 2017;16(2):1369-1375. doi:10.3892/mmr.2017.6698
10.    Zhou RP, Deng MT, Chen LY, et al. Shp2 regulates chlorogenic acid-induced proliferation and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in adipogenesis. Mol Med Rep. 2015;11(6):4489-4495. doi:10.3892/mmr.2015.3285
11.    Suryanendra A, Suryani E. The analysis of coffee productivity and production improvement strategies in Indonesia: A system  
a.    thinking approach. AIP Conference Proceedings.  2021. 2329(1):1-7.doi.org/10.1063/5.0042157
12.    Bin HS, Jeong JH, Choi UK. Chlorogenic acid promotes osteoblastogenesis in human adipose tissue-derived mesenchymal stem cells. Food Sci Biotechnol. 2013;22 (suppl.1):107-112. doi:10.1007/s10068-013-0055-3
13.    Liu CC, Zhang Y, Dai BL, et al. Chlorogenic acid prevents inflammatory responses in IL 1β stimulated human SW 1353 chondrocytes, a model for osteoarthritis. Mol Med Rep. 2017 Aug;16(2):1369-1375. doi: 10.3892/mmr.2017.6698. .
14.    Citterio F, Gualini G, Fierravanti L, Aimetti M. Stem cells and periodontal regeneration: present and future. Plast Aesthetic Res. 2020. doi:10.20517/2347-9264.2020.29
15.    Hu J, Cao Y, Xie Y, et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther. 2016. doi:10.1186/s13287-016-0362-8
16.    Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol. 2014;59(2):167-175. doi:10.1016/j.archoralbio.2013.11.008
17.    Tang J, Wu T, Xiong J, et al. Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif. 2015;48(2):239-248. doi:10.1111/cpr.12173
18.    Kizil C, Kyritsis N, Brand M. Effects of inflammation on stem cells: together they strive? EMBO Rep. 2015;16(4):416-426. doi:10.15252/embr.201439702
19.    Michael S, Achilleos C, Panayiotou T, Strati K. Inflammation shapes stem cells and stemness during infection and beyond. Front Cell Dev Biol. 2016;4(NOV):1-7. doi:10.3389/fcell.2016.00118
20.    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000. doi:10.1073/pnas.240309797
21.    Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol. 2017. doi:10.3329/bjp.v12i2.30892
22.    Vinson JA, Chen X, Garver DD. Determination of Total Chlorogenic Acids in Commercial Green Coffee Extracts. J Med Food. 2019. doi:10.1089/jmf.2018.0039
23.    Farah A, De Paulis T, Trugo LC, Martin PR. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem. 2005;53(5):1505-1513. doi:10.1021/jf048701t
24.    Nuti N, Corallo C, Chan BMF, Ferrari M, Gerami-Naini B. Multipotent Differentiation of Human Dental Pulp Stem Cells: a Literature Review. Stem Cell Rev Reports. 2016;12(5):511-523. doi:10.1007/s12015-016-9661-9
25.    Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int J Mol Sci. 2019;20(5). doi:10.3390/ijms20051132
26.    Yang X, Li L, Xiao L, Zhang D. Recycle the dental fairy’s package: Overview of dental pulp stem cells. Stem Cell Res Ther. 2018;9(1):1-8. doi:10.1186/s13287-018-1094-8
27.    Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I. Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs. 2012;196(6):490-500. doi:10.1159/000338654
28.    Nakashima M, Iohara K, Murakami M. Dental pulp stem cells and regeneration. Endod Top. 2013;28(1):38-50. doi:10.1111/etp.12027
29.    Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62-68. doi:10.1016/j.ymeth.2015.09.016
30.    Cheng Zhang, Ning Wang, Yu Xu  et al. Identification of Key Contributive Compounds in a HerbalMedicine: A Novel Mathematic—Biological EvaluationApproach. Adv. Theory Simul. 2021: 1-15  DOI: 10.1002/adts.202000279

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available