Author(s): Aniek Setiya Budiatin, Nily Su’aida, Aziszia Insanya Lamakluang, Silda Sabila Rahma, Bambang Subakti Zulkarnain, Dewi Isadiartuti

Email(s): anieksb@yahoo.co.id

DOI: 10.52711/0974-360X.2022.00836   

Address: Aniek Setiya Budiatin*, Nily Su’aida, Aziszia Insanya Lamakluang, Silda Sabila Rahma, Bambang Subakti Zulkarnain, Dewi Isadiartuti
1Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Kampus C-UNAIR, Jl. Mulyorejo, Surabaya, East Java, Indonesia, 60286.
2Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Kampus C-UNAIR, Jl. Mulyorejo, Surabaya, East Java, Indonesia, 60286.
*Corresponding Author

Published In:   Volume - 15,      Issue - 11,     Year - 2022


ABSTRACT:
Chitosan and gelatin were used as polymer scaffolds for cartilage tissue engineering. The scaffold was used as a biodegradable drug delivery system for diclofenac sodium to treat cartilage defects on osteoarthritis (OA). The materials were composed of diclofenac sodium, chitosan, gelatin, and cross-linking agent-glutaraldehyde (GTA) were form as scaffold. The purpose of this study to investigate the effect of GTA concentration variations (0.00%; 0.25%; 0.50%; 1.00%; 2.50%) on characteristics and the release of diclofenac sodium from chitosan-gelatin scaffold. The scaffolds were made by using the pre-freezing method with a temperature of -56 ± 5°C for 24 hours and characterized by porosity, pore size, swelling, degradation, toxicity test, and diclofenac sodium released from chitosan-gelatin scaffolds at pH and temperature body. The results showed, the addition of GTA increased the swelling ratio from 195.79 ± 7.04% to 793.49 ± 6.92% and minimized weight loss up to 50.98 ± 0.82%, percentage of living cells >60%, optimal porosity at 106.94 ± 9.38 % with pore size 135.48 ± 89.70 µm, diclofenac sodium as sustained release drug completed in 542 hours and the release was following zero-order kinetic. Chitosan-gelatin scaffold is a potential candidate for cartilage tissue engineering and drug delivery system for diclofenac sodium.


Cite this article:
Aniek Setiya Budiatin, Nily Su’aida, Aziszia Insanya Lamakluang, Silda Sabila Rahma, Bambang Subakti Zulkarnain, Dewi Isadiartuti. Effect of Glutaraldehyde Concentration Variation on Diclofenac Sodium Scaffolds as Cross-Linking Agent. Research Journal of Pharmacy and Technology. 2022; 15(11):4974-0. doi: 10.52711/0974-360X.2022.00836

Cite(Electronic):
Aniek Setiya Budiatin, Nily Su’aida, Aziszia Insanya Lamakluang, Silda Sabila Rahma, Bambang Subakti Zulkarnain, Dewi Isadiartuti. Effect of Glutaraldehyde Concentration Variation on Diclofenac Sodium Scaffolds as Cross-Linking Agent. Research Journal of Pharmacy and Technology. 2022; 15(11):4974-0. doi: 10.52711/0974-360X.2022.00836   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-11-21


REFERENCES:
1.    Kanchan RP. Sarika VK. Poonam MK. Osteoarthritis: Pathophysiology and Current Treatment Modalities. Asian J. Pharm. Res. 2019; 9(4):289-298. doi: 10.5958/2231-5691.2019.00046.7
2.    Sofat N. Robertson SD. Hermansson M. Jones J. Mitchell P. Wait R. Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Abstracts Rheumatol. Int. 2012; 32(9):809-2817. doi: 10.1007/s00296-011-2067-8.
3.    Mangampa I. Nugroho TE. Pengaruh pemberian Natrium diklofenak dosis 1,4mg/kgBB dan 2,8mg/kgBB terhadap serum kreatinin tikus wistar. Media Medika Muda. 2015; 4(4):1004-1012.
4.    Dalimi A. Karakteristik pasien dan pola pengobatan osteoartritis di RSUP dr. Sardjito, Yogyakarta tahun 2013. 2014; Yogyakarta: Fakultas Farmasi UGM
5.    Jacqueline RB. Laura DR. Pharmacology for nursing care. Elsevier Saunders. 2013; 60-64.
6.    Altman R. Bosch B. Brune K. Patrignani P. Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015; 75(8), 859-877. doi: 10.1007/s40265-015-0392-z.
7.    Hendradi E. Purwanti T. Suryanto AA. Karakterisasi sediaan dan uji pelepasan natrium diklofenak dengan sistem mikroemulsi dalam basis gel hpc-m. PharmaScientia. 2012; 1(2):17-29.  
8.    Iglesias N. Galbis E. Valencia C. Violante M. Reversibel pH-sensitive chitosan-based hydrogels, influence of dispersion composition on rheological properties and sustained drug delivery. Polymers, 2018; 10:1-17. doi: 10.3390/polym10040392.
9.    Saumya S. Agila A. Poorva SG. Priya. A Review on 3D Printing Techniques and Scaffolds for Auricular Cartilage Reconstruction. Research J. Pharm. and Tech. 2018; 11(9): 4179-4186. doi: 10.5958/0974-360X.2018.00767.9
10.    Keerthic AS. Jothishwar S. Visvavela CNP. Priya G. Scaffolds for Biomolecule Delivery and Controlled Release–A Review. Research J. Pharm. and Tech. 2018; 11(10): 4719-4730. doi: 10.5958/0974-360X.2018.00861.2
11.    Yadav VB. Yadav AV. Applications of Chitosan in Designing of Different Microspheres. Research J. Pharm. and Tech. 2(1): Jan.-Mar. 2009; 34-47
12.    Sivakumar SM. Mohammed MS. Aamena J. Kannadasan M. Pharmaceuticals aspects of Chitosan polymer “In Brief”. Research J. Pharm. and Tech. 2013; 6(12):1439-1442.
13.    Buzlama A. Doba S. Slivkin A. Daghir S. Pharmacological and biological effects of chitosan. Research J. Pharm. and Tech 2020; 13(2):1043-1049. doi: 10.5958/0974-360X.2020.00192.4
14.    Kumar RS. Subhashish D. Ganesh GNK. Raju L. Samantha MK. Suresh B. Chitosan Nano Particles by Ionotropic Gelation Containing L-Arginine. Research J. Pharm. and Tech. 2(1): Jan.-Mar. 2009; 80-85.
15.    Afewerki S. Sheikhi A. Kannan S. Ahadian S. Khademhosseini. Gelatin‐polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioengineering & Translational Medicine. 2019; 4(1): 96-115. doi: 10.1002/btm2.10124
16.    Rathor S. Ram A. Formulation and Characterization of Biocompatible Microspheres of Benzophenone-3. Research J. Pharma. Dosage Forms and Tech. 2009; 1(3):222-225.
17.    Saltzman W.M. Drug delivery engineering principles for drug therapy. 2001. Oxford Univeristy Press. New York.
18.    Ranade VV. Hollinger M. A. Drug Delivery System, ed. 2. 2001. CRC Press LLC. New York.
19.    Budiatin, A.S. 2014. Pengaruh glutaraldehid sebagai crosslink agent gentamisin dengan gelatin terhadap peningkatan efektifitas bovine hydroxyapatite-gelatin sebagai sistem penghantaran obat dan pengisi tulang. Disertasi. Universitas Airlangga. Surabaya.
20.    Khor E. Methods for treatment of collagenous tissues for bioprostheses. 1997; 18(2):95-105. doi: 10.1016/s0142-9612(96)00106-8.
21.    Liu H. Chen B. Mao Z. Gao C. Chitosan Nanoparticles for Loading of Toothpaste Actives and Adhesion on Tooth Analogs. 2007; 106:4248-4256. doi 10.1002/app.27078.
22.    Bigi A. Cojazzi G. Panzavolta S. Rubini K. Roveri. N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde cross-linking. Biomaterials. 2001; 22:763–768. doi: 10.1016/s0142-9612(00)00236-2.
23.    Feigal RJ. Messer HH. A critical look at glutaraldehyde. Pediatr Dent. 1990; 12(2):69-71.  
24.    Gaspar A. Moldovan L. Contantin D. Stanciuc A.M. Boeti P.M.S. Efrimescu I.C. Collagen-based scaffolds for skin tissue engineering. Journal medicine and life. 2011; 4(2):172-177. Epub 2011 May 25.
25.    Martin A. Swarbrick J. Physical Pharmacy, 4rd ed. 2011. Lea and Febiger. Philadelphia. 845-847.
26.    Abreu D. Study of the Effect of the Degree of Crosslinking of Electro-Spun Gelatin on its Resistance to degradation. Thesis. 2017. Yucatan Scientific Research Center Merida Yucatan. Mexico.
27.    Patarroyo JL. Rojas JSF. Pradilla D. Rincon JDV. Cruz JC. Reyes LH. Formulation and Characterization of Gelatin-Based Hydrogels for the Encapsulation of Kluyveromyces lactis—Applications in Packed-Bed Reactors and Probiotics Delivery in Humans. Polymers. 2020; 12:1287. doi:10.3390/polym12061287.
28.    Apriasari ML. Adhani R. Savitri D. Uji sitotoksisitas ekstrak metanol batang pisang mauli (Musa sp) terhadap sel fibroblast BHK 21. Dentino Jurnal Kedokteran Gigi. 2014; 2:210 – 214.
29.    Kalangi, SJ. 2014. Tinjauan histologik tulang rawan. Jurnal Biomedik 6(3): 17-26.
30.    Muzzarelli RAA. Mehtedi ME. Bottegoni C. Aquili A. Gigante A.  Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone.  Marine drugs. 2015; 13(12): 7314-7338. doi: 10.3390/md13127068.
31.    Zhang W. Yi X. Sun X. Zhang Y. Surface modification of non-woven poly (ethylene terephthalate) fibrous scaffold for improving cell attachment in animal cell culture. Journal of chemical technology & biotechnology. 2008; 83(6):904-911. doi.org/10.1002/jctb.1890.
32.    Nanda S. Sood N. Reddy BVK. Markandeywar TS. Preparation and Characterization of poly (vinyl alcohol)-chondroitin Sulphate Hydrogel as scaffolds for Articular Cartilage Regenerate ion. Indian Journal of Materials Science. 2013; 2013:1–8. doi.org/10.1155/2013/516021
33.    David SB. Raj GAG. Synthesis, Characterization and Biodegradable Studies of Oil Based Polymers from Triethyleneglycoldimethacrylate and Vinylacetate. Asian J. Research Chem. 2011; 4(7): 1092-1096.
34.    Chloe N.  Grovera RE.  Camerona SMB.  Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering Chloe N. Grover. 2012. University of Cambridge.
35.    Song X. Zhu C. Fan D. Mi Y. Li X. Fu R. Feng R. A Novel Human-Like Collagen Hydrogel Scaffold with Porous Structure and Sponge-Like Properties. Polymers. 2017; 9(12): 638. doi.org/10.3390/polym9120638
36.    Senthil SP. Chandrasekaran N. Vengadesh M. Ganesan V. Sudhamani T. Senthilkumar KL. Preparation and In-Vitro Evaluation of Abacavir Sulphate Loaded Microspheres Cross-Linked by Different Concentrations of Glutaraldehyde. Research J. Pharm. and Tech. 2010; 3(4): 1128-1131.
37.    Mandal S. Kumar SS. Krishnamoorthy B. Basu SK. Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Brazilian Journal of Pharmaceuticals Sciences. 2010; 46: 785-793



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available