Author(s):
Chrismawan Ardianto, Ardian Lestari Judoko, Mirza Aprilia, Dinda Monika Nusantara Ratri, Toetik Ariyani, Mahardian Rahmadi, Junaidi Khotib
Email(s):
chrismawan-a@ff.unair.ac.id
DOI:
10.52711/0974-360X.2022.00800
Address:
Chrismawan Ardianto, Ardian Lestari Judoko, Mirza Aprilia, Dinda Monika Nusantara Ratri, Toetik Ariyani, Mahardian Rahmadi, Junaidi Khotib
Nanizar Zaman Joenoes Building, Kampus C, UNAIR. Jl. Mulyerejo, Surabaya, 60115.
*Corresponding Author
Published In:
Volume - 15,
Issue - 10,
Year - 2022
ABSTRACT:
Chemotherapy-induced peripheral neuropathy (CIPN) is a one of side effect in cancer patients that receive antineoplastic agent, like oxaliplatin. Orexinergic system in the hypothalamus is the one of system that modulate nociceptive and neuropathy. Because there is flavonoids such as resveratrol and andrographolide that may prevent chemotherapy induced peripheral neuropathy, this study analyzed effects of andrographolide and resveratrol treatment on PPOrx and OX1R mRNA expression in hypothalamic oxaliplatin-induced mice. Materials and Methods This study was conducted for 22 days in mice. Mice injected with oxaliplatin followed by andrographolide or resveratrol. Chemotherapy induced peripheral neuropathic pain was assessed based on withdrawal threshold, mRNA PPOrx expression, and mRNA OX1R expression. Results The results showed that intraperitoneal injection of 100mg/kg resveratrol and 20mg/kg andrographolide increased the withdrawal threshold after oxaliplatin induction. Resveratrol administration also increased the relative expression of PPOrx mRNA significantly, but not the OX1R mRNA relative expression. On the other hand, administration of andrographolide did not cause a change in the expression of PPOrx and OX1R in the hypothalamus. Conclusions Intraperitoneal injection of andrographolide and resveratrol reduces the mechanical allodynia response in oxaliplatin-induced mice significantly. The mechanism of andrographolide increases the withdrawal threshold does not via the orexinergic system, but the mechanism of resveratrol via the orexinergic system.
Cite this article:
Chrismawan Ardianto, Ardian Lestari Judoko, Mirza Aprilia, Dinda Monika Nusantara Ratri, Toetik Ariyani, Mahardian Rahmadi, Junaidi Khotib. Effect of Andrographolide and Resveratrol on OX1R and Prepro-orexin mRNA expression in CIPN-induced hypothalamus of mice with oxaliplatin. Research Journal of Pharmacy and Technology 2022; 15(10):4765-1. doi: 10.52711/0974-360X.2022.00800
Cite(Electronic):
Chrismawan Ardianto, Ardian Lestari Judoko, Mirza Aprilia, Dinda Monika Nusantara Ratri, Toetik Ariyani, Mahardian Rahmadi, Junaidi Khotib. Effect of Andrographolide and Resveratrol on OX1R and Prepro-orexin mRNA expression in CIPN-induced hypothalamus of mice with oxaliplatin. Research Journal of Pharmacy and Technology 2022; 15(10):4765-1. doi: 10.52711/0974-360X.2022.00800 Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-10-73
REFERENCES:
1. Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr Pain Headache Rep. 2017; 21(6):28. doi: 10.1007/s11916-017-0629-5.
2. M.S. Ashawat. Efficacy of Diversified Therapeutics Agents in the Management of Peripheral Neuropathy. Asian J. Res. Pharm. Sci. 2013; 3(4): 151-160. DOI: NA.
3. S. Kavitha , Rajeswari Vaidyanathan, Vijayaraghavan. A study to assess the effectiveness of care bundle approach on the level of chemotherapy induced peripheral neuropathy and quality of life among patients receiving neurotoxic chemotherapy. Res. J. Pharmacology & Pharmacodynamics.2018; 10(4): 179-199. doi: 10.5958/2321-5836.2018.00033.2.
4. Stadnichenko A.V., Krasnopolsky Y.M., Yarnykh T.G.. Standardization of Extrusion Parameters during Liposomal Oxaliplatin Creation. Research J. Pharm. and Tech. 2017; 10(3): 785-788. doi: 10.5958/0974-360X.2017.00147.0.
5. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. 2020; 11:1024. doi: 10.3389/fimmu.2020.01024.
6. Bhope SG, Kuber VV, Patil MJ, Ghosh VK. Validated HPTLC Method for the Quantitation of Andrographolide from Raw Material and Pharmaceutical Dosage Form. Asian J. Research Chem. 2009; 2(3):9314-317. DOI: NA
7. Raj K iwari, R Pandey, S S Shukla, Prashant Tiwari, H Shah. Antibacterial Activity of Aerial Part of Andrographis paniculata. Res. J. Pharmacognosy & Phytochem. 2014; 6(3): 122-125. DOI: NA
8. Mohammed Abdul Aziz Shahid, Y Shravan Kumar, Syed Umar Farooq, Md. Shamim Qureshi. Effect of Resveratrol Pretreatment on Intestinal Transport and Oral Bioavailability of Carvedilol in Rats by P-gp Inhibition. Research J. Pharm. and Tech. 2020; 13(4):1660-1664. DOI: 10.5958/0974-360X.2020.00301.7.
9. Manish Patidar, Gopkumar P., Sridevi G., C.C. Behera, Sujit Pillai. Development and Validation of RP-HPLC Method for Simultaneous Determination of Resveratrol and Curcumin in Pure Form. Research J. Pharm. and Tech. 2013; 6(9): 990-992. Doi: NA.
10. Porro C, Cianciulli A, Calvello R, Panaro MA. Reviewing the Role of Resveratrol as a Natural Modulator of Microglial Activities. Curr Pharm. 2015; 21(36):5277-91. doi: 10.2174/1381612821666150928155612.
11. Li X, Yang S, Wang L, Liu P, Zhao S, Li H, Jiang Y, Guo Y, Wang X. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J Pain Res. 2019; 12:879-890. doi: 10.2147/JPR.S185873.
12. Kanchan R. Pagar, Sarika V. Khandbahale, D. G. Phadtare. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. Asian J. Pharm. Res. 2019; 9(3):193-199. doi: 10.5958/2231-5691.2019.00031.5.
13. Divya Bharti. Analysis of Artificial Brain. Research J. Science and Tech. 2019; 11(2):113-121. doi: 10.5958/2349-2988.2019.00018.4.
14. Wardach J, Wagner M, Jeong Y, Holden JE. Lateral Hypothalamic Stimulation Reduces Hyperalgesia Through Spinally Descending Orexin-A Neurons in Neuropathic Pain. West J Nurs Res. 2016; 38(3):292-307. doi: 10.1177/0193945915610083.
15. Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103. Sci Rep. 2015; 30;5:12584. doi: 10.1038/srep12584.
16. Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep. 2016; 6:29480. doi: 10.1038/srep29480.
17. Duffy CM, Yuan C, Wisdorf LE, Billington CJ, Kotz CM, Nixon JP, Butterick TA. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci Lett. 2015; 606:140-4. doi: 10.1016/j.neulet.2015.08.033.
18. Mori T, Kanbara T, Harumiya M, Iwase Y, Masumoto A, Komiya S, Nakamura A, Shibasaki M, Kanemasa T, Sakaguchi G, Suzuki T. Establishment of opioid-induced rewarding effects under oxaliplatin- and Paclitaxel-induced neuropathy in rats. J Pharmacol Sci. 2014; 126(1):47-55. doi: 10.1254/jphs.14134fp.
19. Xiao WH, Zheng H, Bennett GJ. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience. 2012; 203:194-206. doi: 10.1016/j.neuroscience.2011.12.023.
20. Yen TL, Chen RJ, Jayakumar T, Lu WJ, Hsieh CY, Hsu MJ, Yang CH, Chang CC, Lin YK, Lin KH, Sheu JR. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats. Transl Res. 2016; 170:57-72. doi: 10.1016/j.trsl.2015.12.002..
21. Xu D, Zhao H, Gao H, Zhao H, Liu D, Li J. Participation of pro-inflammatory cytokines in neuropathic pain evoked by chemotherapeutic oxaliplatin via central GABAergic pathway. Mol Pain. 2018; 14:1744806918783535. doi: 10.1177/1744806918783535.
22. Sulaiman MR, Zakaria ZA, Abdul Rahman A, Mohamad AS, Desa MN, Stanslas J, Moin S, Israf DA. Antinociceptive and antiedematogenic activities of andrographolide isolated from Andrographis paniculata in animal models. Biol Res Nurs. 2010; 11(3):293-301. doi: 10.1177/1099800409343311.
23. Chan SJ, Wong WS, Wong PT, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol. 2010; 161(3):668-79. doi: 10.1111/j.1476-5381.2010.00906.x.
24. Gan L, Johnson JA. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta. 2014; 1842(8):1208-18. doi: 10.1016/j.bbadis.2013.12.011.
25. Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 2015; 88(Pt B):93-100. doi: 10.1016/j.freeradbiomed.2015.06.006.
26. Zhang, Y., Huang, F., Xu, Y., Xiang, W., and Xie, C. TRPV1 is involved in the antinociceptive effects of resveratrol in paclitaxel-induced neuropathic pain. All Life. 2021, 14:1, 66-74. doi: 10.1080/26895293.2020.1861111.
27. Zhao X, Yu C, Wang C, Zhang JF, Zhou WH, Cui WG, Ye F, Xu Y. Chronic resveratrol treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with mononeuropathy: involvement of serotonergic system. Neuropharmacology. 2014; 85:131-41. doi: 10.1016/j.neuropharm.2014.04.021.
28. Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose Response. 2010; 8(4):478-500. doi: 10.2203/dose-response.09-015.Mukherjee.
29. Chen YH, Lee HJ, Lee MT, Wu YT, Lee YH, Hwang LL, Hung MS, Zimmer A, Mackie K, Chiou LC. Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray. Proc Natl Acad Sci U S A. 2018; 115(45):E10720-E10729. doi: 10.1073/pnas.1807991115.
30. Ho YC, Lee HJ, Tung LW, Liao YY, Fu SY, Teng SF, Liao HT, Mackie K, Chiou LC. Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci. 2011; 31(41):14600-10. doi: 10.1523/JNEUROSCI.2671-11.2011.
31. Boadas-Vaello P, Castany S, Homs J, Álvarez-Pérez B, Deulofeu M, Verdú E. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord. 2016; 54(5):330-40. doi: 10.1038/sc.2015.225.
32. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M. Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport. 2005; 16(1):5-8. doi: 10.1097/00001756-200501190-00002.
33. Yan JA, Ge L, Huang W, Song B, Chen XW, Yu ZP. Orexin affects dorsal root ganglion neurons: a mechanism for regulating the spinal nociceptive processing. Physiol Res. 2008; 57(5):797-800. doi: 10.33549/physiolres.931574.
34. Modi HR, Wang Q, Gd S, Sherman D, Greenwald E, Savonenko AV, Geocadin RG, Thakor NV. Intranasal post-cardiac arrest treatment with orexin-A facilitates arousal from coma and ameliorates neuroinflammation. PLoS One. 2017; 12(9):e0182707. doi: 10.1371/journal.pone.0182707.
35. Sun M, Wang W, Li Q, Yuan T, Weng W. Orexin A may suppress inflammatory response in fibroblast-like synoviocytes. Biomed Pharmacother. 2018; 107:763-768. doi: 10.1016/j.biopha.2018.07.159.
36. Abu-Ghefreh AA, Canatan H, Ezeamuzie CI. In vitro and in vivo anti-inflammatory effects of andrographolide. Int Immunopharmacol. 2009; 9(3):313-8. doi: 10.1016/j.intimp.2008.12.002.
37. Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000; 14(5):333-8. doi: 10.1002/1099-1573(200008)14:5<333::aid-ptr584>3.0.co;2-d.