Author(s): Gul-e-Saba Chaudhry, Thirukanthan C S, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM

Email(s): gul.saba@umt.edu.my , sababiochem@gmail.com , effendy@umt.edu.my

DOI: 10.52711/0974-360X.2022.00776   

Address: Gul-e-Saba Chaudhry1*, Thirukanthan C S1, Nor Atikah Mohamed Zin1, Yeong Yik Sung1, Tengku Sifzizul Tengku Muhammad1, Effendy AWM1,2
1Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.
2Faculty of Fisheries and Food Science, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.
*Corresponding Author

Published In:   Volume - 15,      Issue - 10,     Year - 2022


ABSTRACT:
The research effort aimed to evaluate the antimicrobial activity of Chitosan derived from Tilapia fish scales. The production of Chitosan achieved by chemical hydrolysis involving demineralization, deproteinization and deacetylation. The antibacterial activities performed against Staphylococcus aureus, Bacillus cereus, Streptococcus agalactiea, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi. The bacteriostatic and bactericidal effect is measured via Minimum Inhibitory Concentrations (MIC) and the Minimum Bactericidal Concentrations (MBC). Chitin yielded 32.74% from 100 grams of dried fish scales in this study, whereas Chitosan yielded 62.13%. Also, the ratio of MBC/MIC determination reveals the bacteriostatic effect of a Chitosan at given concentrations. Therefore, the antibacterial cationic polymer isolated from Tilapia fish scales utilized in various industrial field. The use of derivatization shows a positive role in control drug release systems.


Cite this article:
Gul-e-Saba Chaudhry, Thirukanthan C S, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM. Antibacterial activity of Tilapia Fish Scales derived Chitosan; Future towards Biomedicines. Research Journal of Pharmacy and Technology 2022; 15(10):4627-2. doi: 10.52711/0974-360X.2022.00776

Cite(Electronic):
Gul-e-Saba Chaudhry, Thirukanthan C S, Nor Atikah Mohamed Zin, Yeong Yik Sung, Tengku Sifzizul Tengku Muhammad, Effendy AWM. Antibacterial activity of Tilapia Fish Scales derived Chitosan; Future towards Biomedicines. Research Journal of Pharmacy and Technology 2022; 15(10):4627-2. doi: 10.52711/0974-360X.2022.00776   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-10-49


REFERENCES:
1.    Argar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. Chembioeng Rev. 2015;2: 204–226. doi.org/10.1002/cben.201400025.
2.    Yan N, Chen X. Sustainability: Don’t waste seafood waste. Nat News 2015;524:155. doi: 10.1038/524155a.
3.    Dutta PK, Ravikumar MNV, Dutta J. Chitin and chitosan for versatile applications. Polym 2002;42:307–54.
4.    Wan ACA, Tai BCU. CHITIN-A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 2013;31: 1776–85. doi.org/10.1016/j.biotechadv.2013.09.007.
5.    Kurita K, Chitin and chitosan: functional biopolymers from marine crustaceans. Journal of Marine Biotechnology 2005;8(3): 203–226. doi: 10.1007/s10126-005-0097-5.
6.    Caprile MD. Obtencion y utilizacion de quitina y quitosano a partir de desechos de crustaceos. Congreso Mundial ISW: Haciaunsistema integral de residuossolidosurbanos, Argentina; 2005.
7.    Chellat F, Grandjean-Laquerriere A, Naour RLe,  et al., Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 2005;26(9): 961–970. DOI: 10.1016/j.biomaterials.2004.04.006.
8.    Zhang L, Liu JN, Li L, Xia WH. Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets.” Nutrition Research, 2008;28(6): 383–390. doi.org/10.1016/j.nutres.2007.12.013.
9.    K. V. Harish Prashanth and R. N. Tharanathan, “Chitin/chitosan: modifications and their unlimited application potential—an overview,” Trends in Food Science and Technology 2007;18(3): 117–131. doi.org/10.1016/j.tifs.2006.10.022.
10.    Kravanja G, Primozic M, Knez Z, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules 2019;24: 1960.  DOI: 10.3390/molecules24101960.
11.    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of  action. Biomacromolecules 2003;4: 1457–1465.  doi.org/10.1021/bm034130m.
12.    Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 2010;144: 51–63.  doi: 10.1016/j.ijfoodmicro.2010.09.012.
13.    Gul-e-Saba, Abdah Akim, Hyaluronan-mediated CD44 Receptor Cancer Cells Progression and the Application of Controlled Drug-delivery System. Int J Curr Chem 2010;1(4): 245-265.
14.    Chaudhry GS, Akim A, Zafar MN, Sung YY, Muhammad TST. Understanding HA-CD44 interaction, HA-CD44 activated potential targets in cancer progression and future therapeutics. Adv Pharm Bull Adv Pharm Bull 2021;11(3): 426-438. doi: 10.34172/apb.2021.050.
15.    Chaudhry GS, Jan R, Zafar MN, Habsah M, Muhammad TST Vitex rotundifolia fractions induced apoptosis in human breast cancer T-47D cell line via activation of extrinsic and intrinsic pathway. Asian Pac J Cancer Prev 2019b: 3555-3562. doi: 10.31557/APJCP.2019.20.12.3555.
16.    Gul-e-Saba, Murni Ismail, Noraznawati Ismail, Habsah, Tengku Sifzizul Tengku Muhammad. Induction of Apoptosis by Aaptos sp., fractions in human breast cancer. Int J Res Pharm Sci 20189(2), 328-237.
17.    Hudaya T, Gul-e-Saba, Taib M, Ismail N, Mohammad TST. Methanol extract of four selected marine sponges induces apoptosis in human breast cancer cell line, MCF-7. Int J Res Pharm Sci 2017;8(3): 667-675.
18.    Chaudhry GS, Rahman NH, Vigneswari S, Aziz A, et al. Cytotoxicity Effect and Cell Death Mechanism of Bruguiera gymnorrhiza Extracts on Human Breast Cancer Cell Line (MCF-7). J Adv Pharm Technol Res 2020;11(4): 233-237. doi: 10.4103/japtr.JAPTR_81_20.
19.    Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, et al. Xylocarpus moluccensis induces cytotoxicity in human hepatocellular carcinoma HepG2 cell line via activation of the extrinsic pathway. Asian Pac J Cancer Prev 2021;1;22(S1): 17-24. doi: 10.31557/APJCP.2021.22.S1.17.
20.    Chaudhry GE, Zafar MN, Yeong Yik Sung, Muhammad TST. Phytochemistry and Biological activity of Vitex rotundifolia L., Research J Pharm and Tech 2020;13(11): 5534-5538. doi: 10.5958/0974-360X.2020.00966.X.
21.    Chaudhry GE, Nur Khairina Ahmed Sohimi, Zafar MN, Habsah M, Yeong Yik Sung, Muhammad TST. Induction of apoptosis by selected Xylocarpus sp., fractions in the human cervical cancer cell line, HeLa. Int J Res Pharm Sci, 2020;11(2):  2332-2339. doi.org/10.26452/ijrps.v11i2.2210
22.    Chaudhry GE, Murni NIK, Zafar MN, Habsah M, Yosie A, et al. Induction of apoptosis by Stichopus chloronotus and Holothuria nobilis fractions in human cervical cancer cell line, HeLa. Int J Res Pharm Sci, 2020;11(1): 1238-1247. doi.org/10.26452/ijrps.v11i1.1964.
23.    Chaudhry GE, Murni Islamiah, Muhammad Naveed Zafar, Habsah Mohamad, et al.  Induction of apoptosis by Acanthaster planci sp., and Diadema setosum sp., fractions in human cervical cancer cell line, HeLa 2021;1(22(5)):1365-1373. doi: 10.31557/APJCP.2021.22.5.1365.
24.    Chaudhry GS, Jan R, Habsah M, Mohammad T.S.T (2019a). Vitex rotundifolia fractions induce apoptosis in the human breast cancer cell line, MCF-7, via extrinsic and intrinsic pathways. Res Pharma Sci;14(3): 273-285. doi: 10.4103/1735-5362.258496.
25.    Yunus U, Chaudhry GS, Sung YY, et al. Targeted Drug Delivery Systems: Synthesis and In-Vitro Bioactivity and Apoptosis Studies of Gemcitabine-Carbon Dots Conjugates Biomed Mater 2020;26(15(6): 065004. doi: 10.1088/1748-605X/ab95e1.
26.    Imran M, Rehman ZU, Hogarth G, Tocher DA, Chaudhry GS, et al. Two new monofunctional platinum(II) dithiocarbamate complexes: phenanthriplatin-type axial protection, equatorial-axial conformational isomerism, anticancer and DNA binding studies Dalton Transacrions 2020;49: 15385-15396. doi.org/10.1039/D0DT03018J.
27.    Mahar J, Saeed A, Gul-e-Saba Chaudhry et al. Synthesis, characterization and cytotoxic studies of novel 1,2,4-triazole-azomethine conjugates. J Iran Chem Soc (2020) doi:10.1007/s13738-019-01826-9.
28.    Zafar MN, Masood S, Chaudhry GS, Muhammad TST, et al.  Synthesis, characterization and anti-cancer properties of water-soluble bis(PYE) pro-ligands and derived palladium(ii) complexes. Dalton Trans 2019;48: 15408-15418. doi.org/10.1039/C9DT01923E.
29.    Pookashree, Anitha R. In-vitro Antibacterial activity of Ethyl Acetate extract of Sesbania grandiflora leaf against E. faecalis – A root Canal threat. Research J Pharm and Tech 2016;9(12): 2147-2149. DOI: 10.5958/0974-360X.
30.    Kanagavalli U, Sadiq AM, Sathishkumar, Rajeshkumar S. Plant Assisted Synthesis of Silver Nanoparticles Using Boerhaavia diffusa Leaves Extract and Evolution of Antibacterial Activity. Research J. Pharm. and Tech 2016;9(8): 1064-1068. DOI: 10.5958/0974-360X.
31.    Kumari R, Singh S, Pradhan N, Chandni S, Karthik L, Kumar G, Bhaskara KV, Rao RSM. Optimized Media to Increase the Antibacterial Activity of Wild and Mutated Strain of Nocardiopsis VITSRTB. Research J Pharm and Tech 2014;7(2): 213-220.
32.    Disha MD, Shahare HV, Gedam SS, Bhoyar PK, RO Ganjiwale. Aging of Honey Enhances Its Antibacterial Activity. Research J Pharm and Tech 2009;2(4): 872-873. DOI: 10.5958/0974-360X.
33.    Aravind KS, Lakshmi T, Arun AV. Invitro Antibacterial Activity of Acacia catechu ethanolic leaf extract against selected acidogenic oral bacteria. Research J Pharm and Tech 2012;5(3): 333-336. DOI: 10.5958/0974-360X.
34.    Pooja K, Umakant GS. Synthesis and Antibacterial activity of some newer Benzimidazole derivatives. Research J Pharm and Tech 2020;13(6): 2597-2600. DOI: 10.5958/0974-360X.2020.00462.X.
35.    Shruthi C, Geetha RV. Antibacterial Activity of the Three Essential Oils on Oral Pathogens- An In-vitro Study. Research J Pharm and Tech 2014;7(10): 1128-1129.
36.    Jobin J, Dhidhin R, Prashanth N. Microspheres - Novel Drug Delivery Carrier for Plant Extracts for Antibacterial Activity. Research J Pharm and Tech 2018;11(4):1681-1684. DOI : 10.5958/0974-360X.2018.00313.X
37.    Kumar S, Mazumder A, Vanitha J, Ganesh M, Venkateshwaran K, Saravanan VS, Sivakumar T. Antibacterial Activity of Methanolic Extract of Sesbania Grandiflora (Fabaceae). Research J. Pharm. and Tech 2008;1(1): Page 59-60. DOI: 10.5958/0974-360X
38.    El-Sayed MA, Kamel MM, El-Raei MA, Osman SM, Gamil L, Abbas Hisham A. Study of Antibacterial Activity of Some Plant Extracts Against Enterohemorrhagic Escherichia coli O157:H7. Research J Pharm and Tech 2013;6(8): 916-919. DOI: 10.5958/0974-360X
39.    Toan NV. Production of Chitin and Chitosan from Partially Autolyzed Shrimp Shell Materials. The Open Biomaterials Journal 2009;1: 21-24. DOI: 10.2174/1876502500901010021.
40.    Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 2014;339(16): 2693–2700. doi.org/10.1016/j.carres.2004.09.007.
41.    Gnanamani A, Priya KS, Radhakrishnan N, Babu M. Antibacterial activity of two plant extracts on eight burn pathogens. J Ethnopharmacol 2003;86: 59-61. doi: 10.1016/s0378-8741(03)00044-8.
42.    HanpanichOWongkongkatep P, Pongtharangkul T, Wongkongkatep J. Turn hydrophilic bacteria into bio renewable hydrophobic material with potential antimicrobial activity via interaction with chitosan. Bioresour Technol 2017;230: 97 102. doi.org/10.1016/j.biortech.2017.01.047.
43.    Ma ZX, Garrido-Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro and  nanoparticles as antimicrobial agents: A review Carbohyd Polym 2017;176: 257–265. doi.org/10.1016/j.carbpol.2017.08.082.
44.    Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym 2000; 46: 1–27. doi.org/10.1016/S1381-5148(00)00038-9.
45.    Kraus, D, Peschel A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr Top Microbiol Immunol 2006;306: 231–250. doi: 10.1007/3-540-29916-5_9.
46.    Chung YC, Su YP, Chen CC, Jia G, Wang HI, Wu JCG, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 2004;25: 932–936.
47.    PasquinaLemonche, L, Burns J, Turner RD, Kumar S. et al. The architecture of the gram-positive bacterial cell wall. Nature 2020;582: 294–297. doi.org/10.1038/s41586-020-2236-6.
48.    Rohde M. The gram-positive bacterial cell wall. Microbiol Spectr 2019;7. doi: 10.1128/microbiolspec.GPP3-0044-2018.
49.    Tsai JL, Chentsova-Dutton Y, Friere-Bebeau L, Przymus DE. Emotional expression and physiology in European Americans and Hmong Americans. Emotion. 2002;2: 380-397. doi: 10.1037/1528-3542.2.4.380.
50.    Rhoades J, Roller S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 2000;66: 80-86. doi: 10.1128/aem.66.1.80-86.2000.
51.    Jarry C, Chaput C, Chenite A, Renaud MA, Buschmann M, Leroux JC. Effects of steam sterilization on thermogelling chitosan-based gels. J Biomed Mater Res 2001;58: 127-135. doi: 10.1002/1097-4636(2001)58:1<127:aid-jbm190>3.0.co;2-g.
52.    Raafat D, Von Bargen K, has A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 2008;74: 3764-3773. doi: 10.1128/AEM.00453-08.
53.    Kravanja G, Primozic M, Knez Z, Leitgeb M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules  2019;24: 1960. doi: 10.3390/molecules24101960.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available