Author(s): Gulshan Gurunani, Kapil Agrawal, Sheelpriya Walde, Abhay Ittadwar

Email(s): gurugul27@gmail.com

DOI: 10.52711/0974-360X.2022.00731   

Address: Gulshan Gurunani1*, Kapil Agrawal2, Sheelpriya Walde1,2, Abhay Ittadwar3
1Department of Pharmaceutical Chemistry, Gurunanak College of Pharmacy, Nagpur, 440026, India.
2Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, India.
3Principal, Gurunanak College of Pharmacy, Nagpur, 440026, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 10,     Year - 2022


ABSTRACT:
Based on earlier pieces of evidence of N-piperazinyl fluoroquinolone, and in search of new bioactive molecules from the fluoroquinolone class, the derivates of N-substituted piperazinyl quinolones were synthesized. A series of 2-((amino-1,3,4-thiadiazol-2yl)thio)-1-(4-subst.) (3a–j) were used for diazotization of amines in concentrated hydrochloric acid in the presence of Cu-powder, resulting into 2-((5-chloro-1, 3, 4-thiadiazol-2yl)thio)-1-(4-subst.)ethanone (4a-j). The reaction of (4a-j) with piperazinyl quinolone in dimethylformamide resulted (5a-j). The structure of synthesized compounds was confirmed by their spectral analysis. The compounds are screened against Staphylococcus aureus, Bacillus subtilis(Gram positive)and Escherichia coli, Pseudomonas aeruginosa,(Gram negative) and mycobacterium tuberculosis. The findings revealed moderate activity against Gram-positiveand poorly active against Gram-negative bacteria. Results indicated that halogenated analogs with nitro substitution (5b, 5e, and 5j) derivatives revealed antibacterial and antimycobacterial activity. The results advocate the need for further exploration of such derivatives, coupled with their preclinical and clinical investigation.


Cite this article:
Gulshan Gurunani, Kapil Agrawal, Sheelpriya Walde, Abhay Ittadwar. Synthesis of Sparfloxacin derivatives as an antibacterial, antimycobacterial agents with cytotoxicity investigation. Research Journal of Pharmacy and Technology 2022; 15(10):4359-6. doi: 10.52711/0974-360X.2022.00731

Cite(Electronic):
Gulshan Gurunani, Kapil Agrawal, Sheelpriya Walde, Abhay Ittadwar. Synthesis of Sparfloxacin derivatives as an antibacterial, antimycobacterial agents with cytotoxicity investigation. Research Journal of Pharmacy and Technology 2022; 15(10):4359-6. doi: 10.52711/0974-360X.2022.00731   Available on: https://rjptonline.org/AbstractView.aspx?PID=2022-15-10-4


REFERENCES:
1.    Owens, R. C., Jr.; Ambrose, P. G., ‘Clinical use of the fluoroquinolones’, The Medical clinics of North America, 2000; 84(6): 1447-69.
2.    Smith, A.; Pennefather, P. M.; Kaye, S. B.; Hart, C. A., ‘Fluoroquinolones: place in ocular therapy’, Drugs, 2001; 61(6):747-61.
3.    Naeem A.; Badshah S. L.; Muska M.; Ahmad N.; Khan K., ‘The current case of quinolones: synthetic approaches and antibacterial activity’ Molecules, 2016; 21(4):87–90.
4.    Ball, P. ‘Quinolone generations: natural history or natural selection?’ J. Antimicrob. Chemother., 2000; 46 (TOPIC T1):17-24.
5.    Rakesh Patel, Anil Bhandari. Spectrofluorimetric Estimation of Some Fluoroquinolones. Asian J. Pharm. Ana. 2017; 7(4): 235-238.
6.    Mitscher L. A., ‘Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents’, Chem Rev, 2005; 105(2):559–592.
7.    Aldred K. J.; Kerns R. J.; Osheroff N., ‘Mechanism of quinolone action and resistance’ Biochem, 2014; 53(10):1565–1574.
8.    K Girija, Divya Chacko. Eco-Friendly Synthesis and Biological Evaluation of Some Novel N-Substituted Piperazinyl Fluoro Quinolone Derivatives. Research J. Pharm. and Tech.2, July-Sept 2009; (3):498-501.
9.    Peterson, L. R. ‘Quinolone Molecular Structure Activity Relationships: What We Have Learned about Improving Antimicrobial Activity’ Clinical Infectious Diseases, 2001; 33(s3):S180–S186.
10.    Soni K., ‘Fluoroquinolones: chemistry and action – a review’, Indo Global J Pharm Sci; 2012;  2(1): 43–53.
11.    Mentese M. Y.; Bayrak H.; Uygun Y.; Mermer A.; Ulker S.; Karaoglu S. A.; Demirbas N.,. ‘Microwave assisted synthesis of some hybrid moleculesderivated from norfloxacin and investigation of their biological activities’ Eur J Med Chem; 2013; 67:230–242.
12.    Mallikarjuna Gouda M, Somashekar shyale, Putta Rajesh Kumar, SM Shanta kumar. Analytical Method Development, Validation studies of a Fluoroquinolone chemotherapeutic antibiotic and its Characterization studies. Research J. Pharm. and Tech., March 2011; 4(3):433-436.
13.    Reuman M.; Daum S. J.; Singh B.; Wentland M. P.;  Perni R. B.; Pennock P.; Carabateas P.; M.; Gruett M. D., ‘Saindane MT, Dorff PH, Coughlin SA, Sedlock DM, Rake JB, Lesher GY: Synthesis and antibacterial activity of some novel 1-substituted 1,4-dihydro-4-oxo-7-pyridinyl-3-quinolinecarboxylic acids. Potent antistaphylococcal agents’ J Med Chem; 1995; 38(14):2531–2540.
14.    Emami S.; Shafiee A.; Foroumadi A, ‘Quinolones: Recent structural and clinical developments’ Iran J Pharm Res; 2005; 4:123–136.
15.    Abuo-Rahma G. E. D.; Sarhan H. A.; Gad G. F. M. ‘Design, synthesis, antibacterial activity and physicochemical parameters of novel N-4-piperazinylderivatives of norfloxacin’ Bioorg Med Chem; 2009; 17(11):3879–3886.
16.    Abdel-Aziza A. A. M.; Asiri Y. A.; Al-Agamy M. H. M.; ‘Design, synthesis and antibacterial activity of fluoroquinolones containing bulky arenesulfonyl fragment: 2D-QSAR and docking study, Eur J Med Chem; 2011; 46(11):5487–5497.
17.    Zhang L.; Kumar K. V.; Geng R. X.; Zhou C. H.; ‘Design and biological evaluation of novel quinolone-based metronidazole derivatives as potentCu 2+ mediated DNA-targeting antibacterial agents’, Bioorg Med Chem Lett; 2015; 25:3699–3705.
18.    Wang Y.; Damu G. L. V.; Lv J. S.; Geng R. X.; Yang D. C.; Zhou C. H.; ‘Design, synthesis and evaluation of clinafloxacin triazole hybrids as a newtype of antibacterial and antifungal agents’, Bioorg Med Chem Lett; 2012; 22:5363–5366.
19.    Rajasekaran N.; Anbalagan M.; Kumar N. R.; Panneerselvam P.; ‘Synthesis and antimicrobial studies of novel 7-(N-4-substituted sulfonamide)-6-fluoroquinolone derivatives’, Int J Med Chem Analysis, 2012; 2: 50–56.
20.    Fang K. C.; Chen Y. L.; Sheu J. Y.; Wang T. C.; Tzeng C. C.; ‘Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives’ J Med Chem; 2000; 43(20):3809–3812.
21.    Shou K. J.; Li J.; Jin Y.; Lv Y. W.; ‘Design, synthesis, biological evaluation, and molecular docking studies of quinolone derivatives as potentialantitumor topoisomerase I inhibitors’ Chem Pharm Bull; 2013; 61(6):631–636.
22.    Richter S.; Parolin C.; Palumbo M.; Palu G.; ‘Antiviral properties of quinolone-based drugs’, Curr Drug Targets Infect Disord,; 2004; 4(2):111–116.
23.    Sato M.; Motomura T.; Aramaki H.; Matsuda T.; Yamashita M.; Ito Y.; Kawakami H.; Matsukari Y.; Watanabe W.; Yamataka K.; Ikeda S.; Kodama E.; Matsuoka M.; Shinkai H.; ‘Novel HIV-1 integrase inhibitors derived from quinolone antibiotics’ J Med Chem; 2006; 49(5):1506–1508.
24.    Foroumadi A.; Emami S.; Hassanzadeh A.; ‘Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2- yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives’, Bioorganic and Medicinal Chemistry Letters, 2005; 15(20):4488–4492.
25.    Sanchez J. P.; Domagala J. M.; Hagen S. E.; ‘Quinolone antibacterial agents. Synthesis and structure-activity relation- ships of 8-substituted quinoline-3-carboxylic acids and 1,8- naphthyridine-3-carboxylic acids’, Journal of Med Chem., 1988; 31(5):983–991.
26.    Chu D. T. W.; Fernandes P. B.; Claiborne A. K.; ‘Synthesis and structure-activity relationships of novel aryl-fluoroquinolone antibacterial agents,’ J. Med. Chem.; 1985; 28(11):1558–1564.
27.    Shen L. L.; Mitscher L. A.; Sharma P. N.; ‘Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model,’ Biochemistry, 1989; 28(9):3886–3894.
28.    Jacoby G. A.; ‘Mechanisms of resistance to quinolones’, Clin Infect Dis; 2005; 41(S2) S120–S126.
29.    Li X. Z.; ‘Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms, Int J Antimicrob Agents; 2005; 25(6):453–463.
30.    Bauer A. W.; Kirby W. M.; Sherris J. C.; ‘Turck M: Antibiotic susceptibility testing by a standardized single disk method’, Am J Clin Pathol; 1966; 45(4):493-496.
31.    R. T. Morrison and R. N. Boyd, Organic Chemistry, Pearson Education, New Delhi, India, 2004.
32.    Organic Syntheses, Coll, R. M. Cowper, L. H. Davidson, and A. H. Blatt, Eds., vol. 2, pp. 480–481, JohnWiley&Sons, NewYork, NY, USA, 1943.
33.    Organic Syntheses, Coll, G. H. Coleman, G. E. Honeywell, and A. H. Blatt, Eds., vol. 2, pp. 443–445, John Wiley & Sons, New York, NY, USA, 1943.
34.    Foroumadi, A.; Rineh, A.; Emami, S.; Siavoshi, F.; Massarrat, S.; Safari, F.; Rajabalian, S.; Falahati, M.; Lotfali, E.; Shafiee, A.; ‘Synthesis and anti-Helicobacter pylori activity of 5-(nitroaryl)-1,3,4-thiadiazoles with certain sulfur containing alkyl side chain’, Bioorg. Med. Chem. Lett., 2008; 18 (11):3315-3320.
35.    Sahu Sudeep, Dey Tathagata, Khaidem Somila, Y Jyothi. Microwave Assisted Synthesis of Fluoro-Pyrazole Derivatives for Antiinflammatory Activity. Research J. Pharm. and Tech. March 2011; 4(3):413-419.
36.    Foroumadi, A.; Emami, S.; Pournourmohammadi, S.; Kharazmi, A.; Shafiee, A., ‘Synthesis and in vitro leishmanicidal activity of 2-(1-methyl-5-nitro-1H-imidazol-2-yl)-5-substituted-1, 3, 4-thiadiazole derivatives’, Eur. J. Med. Chem., 2005; 40 (12):1346-1350.
37.    Foroumadi, A.; Mansouri, S.; Kiani, Z.; Rahmani, A., Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1, 3, 4-thiadiazole-2-yl] piperazinyl quinolones. Eur. J. Med. Chem., 2003; 38 (9):851-854.
38.    R. S. Kalkotwar, R. B. Saudagar. Design, Synthesis and anti microbial, anti-inflammatory, Antitubercular activities of some 2,4,5-trisubstituted imidazole derivatives. Asian J. Pharm. Res. 3(4): Oct. - Dec.2013: 159-165.
39.    Goto S.; Sakamoto H.; Ogawa M.; ‘Bactericidal activity of cefazolin, cefoxitin, and cefmetazole against Escherichia coli and Klebsiella pneumoniae’, Chemotherapy, 1982; 28(1):18–25.
40.    Suling W. J.; Seitz L. E.; Pathak V.; ‘Antimycobacterial activities of 2,4-diamino-5-deazapteridine derivatives and effects on mycobacterial dihydrofolate reductase’, Antimicrobial Agents and Chemotherapy, 2000; 44(10):2784–2793.
41.    Kumud Gupta, Surendra Nath Pandeya, Ashish Kumar Pathak, Anuradha Gupta, Synthesis and Antibacterial Activity of Ciprofloxacin Derivatives. Research J. Pharm. and Tech. 4(2): February 2011:308-314.
42.    Palled M. S.., Lohar V. R., Kalekar M. C., Patil P. B., Bhat A. R. Synthesis of 1,2,3,4-[ 1-N- Methyl Benzimidazole] 3-Phenyl Substituted Thiazolidine, 4-One and Carbohydrazide Derivatives for Antimicrobial Activity. Research J. Pharm. and Tech; Feb. 2012; 5(2):249-252.
43.    Yajko D. M.; Madej J. J.; Lancaster M. V.; ‘Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis’, Journal of Clinical Microbiology, 1995; 33(9):2324–2327.
44.    Sriram D.; Yogeeswari P.; Reddy S. P.; ‘Synthesis of pyrazinamideMannich bases and its antitubercular properties’, Bioor and Med Chem Lett, 2006; 16(8):2113–2116.
45.    Sriram D.; Yogeeswari P.; Reddy S. P.; ‘Synthesis of pyrazinamide mannich bases and its antitubercular properties’, Bioorg Med Chem Lett, 2006; 16(8):2113–2116.
46.    Agrawal K. M.; Talele G. S.; ‘Synthesis and antibacterial, antimycobacterial and docking studies of novel N-piperazinyl fluoroquinolones’, Medicinal Chemistry Research, 2013; 22(2):818–831.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available