Author(s): Dina E. EL-Ghwas, Abir S. Al-Nasser, Ghaida A. Zamil

Email(s): ,

DOI: 10.52711/0974-360X.2022.00077   

Address: Dina E. EL-Ghwas1*, Abir S. Al-Nasser2, Ghaida A. Zamil2
1Division of Pharmaceutical Industrial Research, Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Egypt.
2Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabi.
*Corresponding Author

Published In:   Volume - 15,      Issue - 1,     Year - 2022

Attributed to their unique properties zinc oxide nanoparticles (ZnONPs) in recent years, have received considerable attention. Notably, research has demonstrated that zinc in living organisms is an essential nutrient. For example, both eukaryotes and prokaryotes including fungi, bacteria, and yeast by using protein, enzyme or microbial cells and other biomolecules compounds are exploited for the synthesis of ZnONPs in either an extracellular or intracellular route. However, the properties of nanoparticles (NPs) are depended upon their shape and size. ZnONPs demonstrated antimicrobial properties, making them unique for different applications. Therefore, in the current study Due to its extensive antimicrobial activity, eco-friendly and simplicity, ZnO Nanoparticles (ZnONPs) synthesis has gained much attention. So, this review was done to concentrate about the green synthesized of ZnONPs by bacteria and their application. Also, the study of their effect as biopesticides against the House Fly, Musca domestica L was mentioned.

Cite this article:
Dina E. EL-Ghwas, Abir S. Al-Nasser, Ghaida A. Zamil. Zinc Oxide Nanoparticles Bacterial Synthesis and Application. Research Journal of Pharmacy and Technology. 2022; 15(1):471-0. doi: 10.52711/0974-360X.2022.00077

Dina E. EL-Ghwas, Abir S. Al-Nasser, Ghaida A. Zamil. Zinc Oxide Nanoparticles Bacterial Synthesis and Application. Research Journal of Pharmacy and Technology. 2022; 15(1):471-0. doi: 10.52711/0974-360X.2022.00077   Available on:

1.    Barin A. Arabkhazzeli F. Rahbari S. Madani SA. The housefly, Musca domestica, as a possible mechanical vector of Newcastle disease virus in the laboratory and filed. Med. Vet. Entomol. 2010; 24(1), 88-90. doi: 10.1111/j.1365-2915.2009.00859. x.
2.    Hemingway J. Ranson H. Insecticide resistance in insect vectors of human disease. Journal of Annual Review of Entomology. 2000; 45, 371-391.
3.    Athanassiou CG. Kavallieratos NG. Benelli G. Losic D. Usha P. Rani Desneux N. Nanoparticles for pest control: current status and future perspectives. Journal of Pest Science. 2018; 91, 1–15. doi:10.1007/s10340-017-0898-0
4.    Bhattacharyya A. Bhaumik A. Rani PU. Manda lS. Epidi TT. Nano-particles-A recent approach to insect pest control. African Journal of Biotechnology. 2010; 9 (24): 3489-3493. doi: 10.3923/rjnn.2017.1.9
5.    Smith K. Evans DA. El-Hiti GA. Role of modern chemistry in sustainable arable crop protection. Journal of Philosophical Transactions of the Royal Society B. 2008; 363: 623–637 doi: 10.1098/rstb.2007.2174.
6.    Afifi MM. Almaghrabi OA. Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. Journal of BioMed Research International. 2015; (1):1-6. doi: 10.1155/2015/153573
7.    Mitra S. Patra P. Pradhan S. Debnath N. Dey KK. Sarkar S. Chattopadhyay D. Goswami A. Microwave synthesis of ZnO@mSiO2 for detailed antifungal mode of action study: under- standing the insights into oxidative stress. Journal of Colloid and Interface Science. 2015; 444: 97-108. doi: 10.1016/j.jcis.2014.12.041
8.    Chandrasekaran R. Gnanasekar S. Seetharaman P. Keppanan R. Arocki- aswamy W. Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. Journal of Molecular Liquids. 2016; 219: 232-238.
9.    Yuvakkumar R. Suresh J. Saravanakumar BJ. Nathanael A. Hong SL. Rajendran V. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications Spectrochim. Journal of Spectrochimica Acta Part A. 2015; 137: 250-258.doi: 10.1016/j.saa.2014.08.022
10.    Dhandapani P. Siddarth AS. Kamalasekaran S. Maruthamuthu S. Rajagopal G. Bio-approach: ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties.  Journal of Carbohydrate Polymers. 2014; 103: 448–455. doi: 10.1016/j.carbpol.2013.12.074
11.    Agarwal H. VenkatKumar S. Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Journal of Resource Efficient Technologies. 2017; 406 - 413.
12.    Abdul H. Sivaraj R. Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimumbasilicum L. var. purpurascens Benth. Liliaceae leaf extract. Journal of Materials Letters. 2014; 131:16-18. doi: 10.1016/j.matlet.2014.05.033
13.    Seferos DS. Giljohann DA. Nano-Flares:  Probes for Transfection and mRNA Detection in Living Cells. Journal of American Chemical Society. 2007; 129(50): 15477–15479. doi: 10.1021/ja0776529
14.    Azizi S. Mohamad R. Bahadoran A. Bayat S. Rahim R. Ariff A. Saad W. Effect of annealing temperature on antimicrobial and structural properties of biosynthesized zinc oxide nanoparticles using flower extract of Anchusa italica. Journal of Photochemistry and Photobiology. 2016; 161(1): 441-449. doi: 10.1016/j.jphotobiol.2016.06.007.
15.    Sheikhloo Z. Salouti M. Katiraee F. Biological synthesis of gold nanoparticles by Fungus Epicoccum nigrum. Journal of Cluster Science. 2011; 22: 661-665. Doi: 10.1007/s10876-011-0412-4
16.    Wodka D. Bielaniska E. Socha RP. Elzbieciak-Wodka M. Gurgul J. Nowak P. Warszyński P. Kumakiri I. Photocatalytic activity of titanium dioxide modified by silver nanoparticles. American Chemical Society Appl Mater Interfaces. 2010; 2: 1945-1953.
17.    Kengar MD. Jadhav AA. Kumbhar SB. Jadhav RP. A Review on Nanoparticles and its Application. Asian J. Pharm. Tech. 2019; 9(2):115-124. doi: 10.5958/2231-5713.2019.00020.5
18.    Ma H. Williams PL. Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles a review. Journal of Environmental Pollution. 2013; 172: 76-85. doi: 10.1016/j.envpol.2012.08.011.
19.    Hazra C. Kundu D. Chaudhari A. Jana T. Biogenic synthesis, characterization, toxicity and photocatalysis of zinc sulfide nanoparticles using rhamnolipids from Pseudomonas aeruginosa BSO1 as capping and stabilizing agent. Journal of Chemical Technology and Biotechnology. 2013; 88: 1039-1048.
20.    Rajeshkumar S. Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram-negative pathogens. Journal of Energy Resources Technology. 2016; 2: 30-35.
21.    Paulkumar K. Rajeshkumar S. Gnanajobitha G. Vanaja M. Malarkodi C. Annadurai G. Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. International Scholarly Research Nanomater. 2013; 1-8.
22.    Seow ZLS. Wong ASW. Thavasi V. Jose R. Ramakrishna S. Ho GW. Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye sensitized solar cells. Journal of Nanotechnology. 2008; 20(4): 6. doi:10.1088/0957-4484/20/4/045604
23.    Pattanayak U. Green Synthesis of Zinc Nanoparticle by Microbes (A Thesis Submitted for The Partial Fulfillment of The Requirements for The Degree of Master of Science in Life. Science National Institute of Technology. 2013
24.    Ramani M. Ponnusamy S. Muthamizhchelvan C. Zinc oxide nanoparticles: A study of defect level blue green emission. Journal of Optical Materials. 2012; 34(5): 817- 820. doi: 10.1016/j.optmat.2011.11.015
25.    Jana NR. Pal T. Sau TK. Wang ZL. Seed mediated growth method to prepare cubic copper Nanoparticles. Journal of Current Science. 2000; 79(9): 1367-1370
26.    Raveendran P. Fu J. Wallen SL. Completely “Green” Synthesis and Stabilization of metal nanoparticles. Journal of American Chemical Society. 2003; 125(46): 13940-13941 doi: 10.1021/ja029267j.
27.    Parashar UK. Saxena SP. Srivastava A. Bioinspired synthesis of silver nanoparticles. Digest journal of nanomaterials and biostructures. 2009; 4(1): 159- 166.
28.    Mohanpuria P. Rana KN. Yadav SK. Biosynthesis of nanoparticles technological concepts and future applications. Journal of Nanoparticle Research. 2008; 10: 507- 517.
29.    Mittal AK. Chisti Y. Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Journal of Biotechnol Advancec. 2013; 31(2): 346-356. doi: 10.1016/j.biotechadv.2013.01.003.
30.    Zelechowska K. Methods of ZnO nanoparticles synthesis. Journal of Biotechnology. Journal of Computational Biology and Bio nanotechnology. 2014; 95(2): 150-159.
31.    Yusof HM. Mohamad R. Zaidan UH. Abdul Rahman NA.  Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology. 2019; 10: 57. doi: 10.1186/s40104-019-0368
32.    Herbel SV. Vahjen W. Wieler LH. Guenthe, S. Timely approaches to identify probiotic species of the genus Lactobacillus. Journal of Gut Pathogens. 2013; 5(1): 27. doi: 10.1186/1757-4749-5-27.
33.    Rattanachaikunsopon P. Phumkhachorn P. Lactic acid bacteria: their antimicrobial compounds and their uses in food production. Journal of Annals Biologcal. Research. 2010; 1(4): 218-228.
34.    Al-Zahrani HA. El-Waseif AA. El-Ghwas DA. Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of Lactobacillus johnsonii. Journal of Innovations in Pharmaceutical and Biological Sciences. 2018; 5(1):16-20
35.    Singh AK. Viswanath V. Janu VC. Synthesis effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. Journal of Luminescence. 2009; 129: 874-878. doi: 10.1016/j.jlumin.2009.03.027
36.    Markus J. Mathiyalagan R. Kim YJ. Abbai R. Singh P. Ahn S. ZEJ P. Hurh J. Yang DC. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Journal of Enzym. Microb. Technol. 2016; 95: 85–93. doi: 10.1016/j.enzmictec.2016.08.018
37.    Slavin YN. Asnis J. Häfeli UO. Bach H.  Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology. 2017; 15(1): 65. doi: 10.1186/s12951-017-0308
38.    Zhang X. Yan S. Tyagi RD. Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Journal of Chemosphere. 2011; 82(4): 489-94 doi: 10.1016/j.chemosphere.2010.10.023.
39.    Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Journal of International Scholarly Research Notices. 2014; 1-18.
40.    Mukherjee P. Ahmad A. Mandal D. Senapati S. Sainkar SR. Khan MI. Ramani R. Parischa R. Ajayakumar PV. Alam M. Sastry M. Kumar R. Bio reduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew and teChemie. 2001; 40(19): 3585-3588. doi: 10.1002/1521-3773(20011001)
41.    Amane Nikita B. SheteSanmati D. Chavan Rajeshwar V. Desai Punam S. Salunkhe VR. Application of Nanoscience in Pharmacy: Review on Nanotubes developments and its Evaluation. Int. J. Tech. 2019; 9(2):54-66. DOI: 10.5958/2231-3915.2019.00012.9
42.    Marnoor SA. A Review on Nanoparticles and its Applications in Therapeutics as a Novel Drug Delivery System. Asian J. Pharm. Tech. 2019; 9(2):125-128. doi: 10.5958/2231-5713.2019.00011.4
43.    Chauhan R. Reddy A. Abraham J.  Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Journal of Applied Nanoscience. 2015; 5: 63-71. DOI 10.1007/s13204-014-0292-7
44.    Hulkoti NI. Taranath TC.  Biosynthesis of nanoparticles using microbes-a review. Journal of Colloids and Surfaces Bio interfaces. 2014; 121: 474-83. doi: 10.1016/j.colsurfb.2014.05.027.
45.    Upadhyay PK. Jain VK. Sharma K. Sharma R. Synthesis and Applications of ZnO Nanoparticles in Biomedicine Research Journal of Pharmacy and Technology. 2020; 13 (4):1636 -1644. doi:10.5958/0974-360X.2020.00297.8
46.    46.Yadav AR. Mohite SK. Applications of Nanotechnology in Cosmeceuticals. Research J. Topical and Cosmetic Sci. 2020; 11(2):83-88. doi: 10.5958/2321-5844.2020.00015.1
47.    47.Merlin NJ. Selvin S. Sukesh TN. Nano Technology–Potential Applications in Medicine. Asian J. Res. Pharm. Sci. 2011; 1(2): 31-35.
48.    Sharma V.  Nanotechnology and Its applications in energy sector. Int. J. Tech. 2016; 6(2): 87-92. DOI:10.4172/2161-0444.1000247.
49.    Dontulwar JR. Synthesis and Application of Novel Eco-friendly Powder Detergents of Based on Renewable Raw materials. Asian J. Research Chem. 2013; 6(6): 584-587.
50.    Purica M. Budianu E. Rusu E. ZnO thin films on semiconductors substrate for large area photo detector applications. Journal of Thin Solid Films. 2001; 383: 284-286. doi:10.1016/S0040-6090(00)01579-0
51.    Senoussaoui N. Krause M. Müller J. Bunte E. Brammer T. Stiebig H. Thin film solar cells with periodic grating coupler. Journal of Thin Solid Films. 2004; 397: 451-452.
52.    Lima SAM. Sigoli FA. Jafelicci MJr. Davolos MR. Luminescent properties and lattice correlation defects on zinc oxide. International Journal of Inorganic Materials. 2001; 3; 749-754.
53.    Uma Sangari N.  A Brief Review on the Applications of ZnO and TiO2 in Photocatalysis and their Modification with β-Cyclodextrin. Asian J. Research Chem. 2018; 11(3): 681-690. doi: 10.5958/0974-4150.2018.00121.9
54.    Jia Z. Yue L. Zheng Y. Xu Z. Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties. Journal of Materials Chemistry and Physics. 2008; 107: 137-141.doi: 10.1016/j.matchemphys.2007.06.061
55.    Roy S. Basu S. Improved zinc oxide films for gas sensor applications. Journal of Bulletin of Materials Science. 2002; 25: 513–515.
56.    Arora AK. Jaswal VS. Bala R. Metal/Mixed Metal Oxides and their Applications as Catalyst: A Review. Asian J. Research Chem. 2018; 11(6): 893-899.doi: 10.5958/0974-4150.2018.00155.4
57.    Wang DH. Kou R. Gil MP. Jacobson HP. Tang J. Yu DH. Lu YF. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes. Journal of Nanoscience and Nanotechnology. 2005; 11: 1904-1909. doi: 10.1166/jnn.2005.435
58.    Lin CJ. Lu YT. Hsieh CH. Chien SH. Surface modification of highly ordered TiO2 nanotube arrays for efficient photo-electrocatalytic water splitting. Journal of Applied Physics Letters. 2009; 94: 113102-113104.
59.    Bizarro M. High photocatalytic activity of ZnO and ZnO: Al nanostructured films deposited by spray pyrolysis. Applied Catalysis. B Environ. 2010; 97: 198-203. doi:10.1016/J.APCATB.2010.03.040
60.    Li Q. Wang C. Ju M. Chen W. Wang E. Polyoxometalate-assisted electrochemical deposition of hollow ZnO nanospheres and their photocatalytic properties. Journal of Microporous Mesoporous Materials. 2011; 138: 132-139.
61.    Rahban M. Ali AD. Saboury A. Golestani A. Nanotoxicity and Spectroscopy Studies of Silver Nanoparticle: Calf Thymus DNA and K562 as Targets. Journal of Physical Chemical. 2010; 114: 5798-5803.
62.    Kamaraj C, Rajakumar G, Rahuman AA, Velayutham K, Bagavan A, Zahir AA, Elango G. Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae).  Journal of Parasitology Research, 2012, 111(6), 2439-2448. doi: 10.1007/s00436-011-2689-5

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available