Author(s):
Girgis Samuel, Uddin Nazim, Ahmed S. G. Srag El-Din
Email(s):
girgissamuel2@gmail.com
DOI:
10.52711/0974-360X.2021.00840
Address:
Girgis Samuel1*, Uddin Nazim1, Ahmed S. G. Srag El-Din2
1Department of Pharmaceutical Science, School of Pharmacy, University of Sunderland, England.
2Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Egypt.
*Corresponding Author
Published In:
Volume - 14,
Issue - 9,
Year - 2021
ABSTRACT:
The main objective of this project was to overcome the drawbacks of the emulsification techniques during rising a delivery system for a novel and potent anticancer drug, CK-10, projected for enlightening the therapeutic index of the drug. Emulsion/Solvent evaporation and innovative microfluidic techniques were used to frame the nanoparticles. Loading efficiency and in-vitro release were characterized by a modified Lowry assay. Size and zeta potential were analyzed by dynamic light scattering, laser obscuration time, and tuneable pore resistive sensing. Compatibility and shelf life were tested by differential scanning calorimeter and Fourier transform infra-red. The extent of the nanoparticles degradation was measured by color indicator and potentiometric titrations. The result showed that PLGA/B Cyclodextrin nanoparticles had a higher peptide loading efficiency by 53.92% for the novel microfluidic technique as well as higher in-vitro release and better degradation. PLGA/B Cyclodextrin and PLGA/HPMA nanoparticles had a closely related size and zeta potential. It was concluded that the novel microfluidic technique could augment the physicochemical properties of the CK-10 nanoparticles to improve its pharmacokinetics and pharmacodynamics.
Cite this article:
Girgis Samuel, Uddin Nazim, Ahmed S. G. Srag El-Din. Physicochemical characterization of Novel Particulate Delivery Systems for Antitumor/metastatic Therapeutics. Research Journal of Pharmacy and Technology. 2021; 14(9):4837-4. doi: 10.52711/0974-360X.2021.00840
Cite(Electronic):
Girgis Samuel, Uddin Nazim, Ahmed S. G. Srag El-Din. Physicochemical characterization of Novel Particulate Delivery Systems for Antitumor/metastatic Therapeutics. Research Journal of Pharmacy and Technology. 2021; 14(9):4837-4. doi: 10.52711/0974-360X.2021.00840 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-9-54
REFERENCES:
1. Hajare, R.; Parwani, K.; Bajad, S.; Chandekar, N.; Chandewar, A., Breast Cancer and Indole-3-Carbinol: Controversy of Estrogen Level and Enzyme Elastase. Research Journal of Pharmacy and Technology. 2009, 2, 439-440.
2. Bhasker, S.; Sandeep, G.; Ranganath, Y., Future of Cancer Therapy-COX-2 Inhibitors: A Review. Research Journal of Pharmacy and Technology. 2009, 2, 617-620.
3. Rush, M. G.; Drivas, G.; D'eustachio, P., The small nuclear GTPase Ran: how much does it run? Bioassays 1996, 18, 103-112.
4. Sazer, S., The search for the primary function of the Ran GTPase continues. Trends in Cell Biology. 1996, 6, 81-85.
5. Scheffzek, K.; Klebe, C.; Fritz-Wolf, K.; Kabsch, W.; Wittinghofer, A., Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature. 1995, 374, 378-381.
6. Matchett, K. B.; McFarlane, S.; Hamilton, S. E.; Eltuhamy, Y. S.; Davidson, M. A.; Murray, J. T.; Faheem, A. M.; El-Tanani, M., Ran GTPase in nuclear envelope formation and cancer metastasis. In Cancer Biology and the Nuclear Envelope, Springer. 2014; pp 323-351.
7. Aksu, M.; Trakhanov, S.; Görlich, D., Structure of the exportin Xpo4 in complex with RanGTP and the hypusine-containing translation factor eIF5A. Nature Communications. 2016, 7, 11952.
8. Vetter, I. R.; Nowak, C.; Nishimoto, T.; Kuhlmann, J.; Wittinghofer, A., Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature. 1999, 398, 39-46.
9. Brannon-Peppas, L.; Blanchette, J. O., Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews. 2004, 56, 1649-1659.
10. Aina, O. H.; Sroka, T. C.; Chen, M. L.; Lam, K. S., Therapeutic cancer targeting peptides. Peptide Science: Original Research on Biomolecules. 2002, 66, 184-199.
11. Yin, H.; Yang, J.; Zhang, Q.; Wang, H.; Xu, J.; Zheng, J., iRGD as a tumor‑penetrating peptide for cancer therapy. Molecular Medicine Reports. 2017, 15, 2925-2930.
12. Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M., Synthetic therapeutic peptides: science and market. Drug Discovery Today. 2010, 15, 40-56.
13. West, C. P.; Lumsden, M. A.; Lawson, S.; Williamson, J.; Baird, D. T., Shrinkage of uterine fibroids during therapy with goserelin (Zoladex): a luteinizing hormone-releasing hormone agonist administered as a monthly subcutaneous depot. Fertility and Sterility. 1987, 48, 45-51.
14. Hemalatha, C.; Anbarasu, K.; Aanandhi, V. M., Evaluation of Anti-Cancer and Anti-Oxidant Activity of Cissus quandrangularis Extracts in DMBA induced Mammary Carcinomas. Research Journal of Pharmacy and Technology. 2017, 10, 293-300.
15. Sethi, R.; Sanfilippo, N., Six-month depot formulation of leuprorelin acetate in the treatment of prostate cancer. Clinical Interventions in Aging. 2009, 4, 259.
16. dos Santos, P. P.; Flôres, S. H.; de Oliveira Rios, A.; Chisté, R. C., Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends in Food Science and Technology. 2016, 53, 23-33.
17. Bourdenx, M.; Daniel, J.; Genin, E.; Soria, F. N.; Blanchard-Desce, M.; Bezard, E.; Dehay, B., Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases. Autophagy. 2016, 12, 472-483.
18. Bilati, U.; Allémann, E.; Doelker, E., Poly (D, L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency. Journal of Microencapsulation. 2005, 22, 205-214.
19. El-Menshawe, S. F.; Ali, A. A.; Halawa, A. A.; El-Din, A. S. S., A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: in-vitro and in-vivo characterization. Drug Design, Development and Therapy. 2017, 11, 3377-3388.
20. Nahar, N.; Naz, S.; Asad, S.; Rahman, M. M.; Ahmed, T.; Islam, K.; Aman, D.; Setu, N. I.; Kayser, S.; Islam, S., Analysis of the genotypic distribution of virulence and antibiotic resistance biomarkers of Listeria species in-silico. Research Journal of Pharmacy and Technology. 2018, 11, 2173-2179.
21. Karthikeyan, D.; Sonkar, S.; Pandey, V.; Kumar, J. N.; Sengottuvelu, S.; Bhowmick, M.; Shivakumar, T., Development and Characterization of Modified Ocular Inserts with improved ocular compatibility. Research Journal of Pharmacy and Technology. 2008, 1, 93-99.
22. Dubey, N.; Dubey, N.; Mehta, R.; Saluja, A.; Jain, D., Preparation and Physico-chemical Characterization of Kushta-e-sadaf, A Traditional Unani Formulation. Research Journal of Pharmacy and Technology. 2008, 1, 182-186.
23. Porwal, P. K.; Jain, N.; Pathak, A.; Panigrahi, M.; Tiwari, A. K., Fixed Dose Combination Product: Current Status Among Regulatory Agencies. Research Journal of Pharmacy and Technology. 2009, 2, 433-438.
24. Elkomy, M. H.; El-Menshawe, S. F.; Ali, A. A.; Halawa, A. A.; El-Din, A. S. S., Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker. Drug Delivery and Translational Research. 2017, 1-13.
25. Andal, P.; Tamilselvy, S.; Priyatharesini, P. I., Green Synthesis of Silver Nanoparticles from Carrot. Research Journal of Pharmacy and Technology. 2018, 11, 2757-2760.
26. Damien, T.; Rao, B. S.; Kumar, P. A.; Yadav, A. S.; Kuikarni, S. V., Formulation and Evaluation Theophylline Floating Tablets and the Effect of Citric Acid on Release. Research Journal of Pharmacy and Technology. 2010, 3, 1066-1071.
27. Mishra, V. V.; Bhanja, S.; Panigrahi, B., Development and Evaluation of Nanoemulsion gel for transdermal delivery of Valdecoxib. Research Journal of Pharmacy and Technology. 2019, 12, 600-610.
28. Petersen, G. H.; Alzghari, S. K.; Chee, W.; Sankari, S. S.; La-Beck, N. M., Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. Journal of Controlled Release. 2016, 232, 255-264.
29. Buske, J.; König, C.; Bassarab, S.; Lamprecht, A.; Mühlau, S.; Wagner, K., Influence of PEG in PEG–PLGA microspheres on particle properties and protein release. European Journal of Pharmaceutics and Biopharmaceutics. 2012, 81, 57-63.
30. Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O. C., Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews. 2014, 66, 2-25.
31. Santander-Ortega, M. J.; Csaba, N.; Alonso, M. J.; Ortega-Vinuesa, J. L.; Bastos-Gonzalez, D., Stability and physicochemical characteristics of PLGA, PLGA: poloxamer and PLGA: poloxamine blend nanoparticles: A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 296, 132-140.
32. Popiolski, T. M.; Otsuka, I.; Halila, S.; Muniz, E. C.; Soldi, V.; Borsali, R., Preparation of polymeric micelles of poly (ethylene oxide-b-lactic acid) and their encapsulation with lavender oil. Materials Research. 2016, 19, 1356-1365.
33. Chan, H. F.; Ma, S.; Leong, K. W., Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies? Regenerative Biomaterials. 2016, 3, 87-98.
34. Michael, M.; White, S. C.; Abdi, E.; Nott, L.; Clingan, P.; Zimet, A.; Button, P.; Gregory, D.; Solomon, B.; Dobrovic, A., Multicenter randomized, open‐label phase II trial of sequential erlotinib and gemcitabine compared with gemcitabine monotherapy as first‐line therapy in elderly or ECOG PS two patients with advanced NSCLC. Asia‐Pacific Journal of Clinical Oncology. 2015, 11, 4-14.
35. Kara, A.; Ozturk, N.; Sarisozen, C.; Vural, I., Investigation of formulation parameters of plga nanoparticles prepared by Nanoprecipitation Technique. 2014.
36. Badri, W.; Miladi, K.; Nazari, Q. A.; Fessi, H.; Elaissari, A., Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 516, 238-244.
37. Li, Z.; Qiu, L.; Chen, Q.; Hao, T.; Qiao, M.; Zhao, H.; Zhang, J.; Hu, H.; Zhao, X.; Chen, D., pH-sensitive nanoparticles of poly (l-histidine)–poly (lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomaterialia 2015, 11, 137-150.
38. Yáñez-Mó, M.; Siljander, P. R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J., Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles. 2015, 4, 27066.
39. Sun, S.-B.; Liu, P.; Shao, F.-M.; Miao, Q.-L., Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. International Journal of Clinical and Experimental Medicine. 2015, 8, 19670.
40. Liu, Y.; Wu, X.; Mi, Y.; Zhang, B.; Gu, S.; Liu, G.; Li, X., PLGA nanoparticles for the oral delivery of nuciferine: preparation, physicochemical characterization and in vitro/in vivo studies. Drug Delivery. 2017, 24, 443-451.