Author(s): Bambang Wijianto, Cikra I. N. H. Safitri

Email(s): bam.wijianto@pharm.untan.ac.id

DOI: 10.52711/0974-360X.2021.00798   

Address: Bambang Wijianto1, Cikra I. N. H. Safitri2
1Department of Pharmaceutical Chemistry, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia.
2Department of Pharmaceutical Chemistry, Academy of Pharmacy Mitra Sehat Mandiri Sidoarjo, Sidoarjo, Indonesia.
*Corresponding Author

Published In:   Volume - 14,      Issue - 9,     Year - 2021


ABSTRACT:
Mono-carbonyl compounds of curcumin, especially those containing hydroxy groups at the para position in the aromatic ring flanked by an electron withdrawing group (EWG) like chlorine, are known to have anti-inflammatory, antioxidant, and antibacterial activity. This study aims to synthesize mono-carbonyl compounds of curcumin with assisted microwave synthesis and determine its toxicity. The acute toxicity assay carried out on zebrafish larvae. The results showed that the synthesis of mono-carbonyl compounds of curcumin with assisted microwave synthesis gave clean products, faster reaction rates, more product yields, economical, and environmentally friendly. The optimal synthesis results obtained at 160Watt microwave radiation energy for 10 minutes. The acute toxicity assay of HGV-6, PGV-6, and GVT-6 compounds showed low toxicity to zebrafish larvae.


Cite this article:
Bambang Wijianto, Cikra I. N. H. Safitri. Synthesis of Mono-Carbonyl Analogues of Curcumin Assisted by Microwave Irradiation. Research Journal of Pharmacy and Technology. 2021; 14(9):4591-4. doi: 10.52711/0974-360X.2021.00798

Cite(Electronic):
Bambang Wijianto, Cikra I. N. H. Safitri. Synthesis of Mono-Carbonyl Analogues of Curcumin Assisted by Microwave Irradiation. Research Journal of Pharmacy and Technology. 2021; 14(9):4591-4. doi: 10.52711/0974-360X.2021.00798   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-9-12


REFERENCES:
1.    Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008; 76(11): 1590–611.
2.    Anitha A, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym. 2011; 84(3): 1158–64.
3.    Joe B, Vijaykumar M, Lokesh BR. Biological Properties of Curcumin-Cellular and Molecular Mechanisms of Action. Crit Rev Food Sci Nutr. 2004; 44(2): 97–111.
4.    Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur J Cancer. 2005; 41(13): 1955–68.
5.    Wijianto B, Ritmaleni R, Purnomo H, Nurrochmad A. Quantitative Structure Activity Relationship (QSAR) study and Biological evaluation on Mono-ketone analogs of Curcumin as Antioxidant. Res J Pharm Tech. 2020; 13(10): 4829–35.
6.    Wijianto B, Ritmaleni R, Purnomo H, Nurrochmad A. In silico and in vitro assay of HGV analogue as antibacterial. Int J Pharm Pharm Sci. 2019; 11(3): 78–85.
7.    Wijianto B, Ritmaleni, Purnomo H, Nurrochmad A. Curcumin mono-carbonyl analogs as potent antibacterial compounds: synthesis, biological evaluation and docking simulation study. Rasayan J Chem. 2020; 13(02): 1153–65.
8.    Wijianto B, Ritmaleni R, Purnomo H, Nurrochmad A. In silico and in vitro anti-inflammatory evaluation of 2,6-bis-(3’-ethoxy, 4’-hydroxybenzylidene)-cyclohexanone, 2,6-bis-(3’-Bromo,4’-methoxybenzylidene)-cyclohexanone, and 2,6-bis- (3’,4’-dimethoxybenzylidene)-cyclohexanone. J Appl Pharm Sci. 2020; 10(6): 99–106.
9.    Murwanti R, Kholifah E, Ari Sudarmanto BS, Hermawan A. Curcumin and its Analogue Targeting β-Catenin and GSK-3β in Wnt Signaling Pathways: In Vitro and In Silico Study. Res J Pharm Tech. 2020; 13(4): 1715–9.
10.    Damayanti P, Ritmaleni R, Setyowati EP. Synthesis and antibacterial activity of 4-Piperidone curcumin analogues against Gram-positive and Gram-negative bacteria. Res J Pharm Tech. 2020; 13(10): 4765–9.
11.    Satapathy A, V. Rao M. Protective effect of Curcumin on 2, 4- Dichlorophenoxy acetic acid exerted Hepatotoxicity in Mice. Res J Pharm Tech. 2018; 11(2): 637–42.
12.    Tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. Z Für Lebensm-Unters Forsch. 1985;180(5):402–404.
13.    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Curcumin: Problems and Promises. Mol Pharm. 2007; 4(6): 807–18.
14.    Lin J-K, Pan M-H, Lin-Shiau S-Y. Recent studies on the biofunctions and biotransformations of curcumin. Biofactors. 2000; 13(1–4): 153–158.
15.    Pan M-H, Huang T-M, Lin J-K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999; 27(4): 486–494.
16.    Wang Y-J, Pan M-H, Cheng A-L, Lin L-I, Ho Y-S, Hsieh C-Y, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997; 15(12): 1867–1876.
17.    Karki D, Kulkarni GS, Swamy S, Sheeba F. Formulation and Evaluation of Mucoadhesive Buccal Tablets of Curcumin and its Bioavailability Study. Res J Pharm Tech. 2017; 10(12): 4121–8.
18.    Samanta A, Roy A, Majumdar M. Study of Various Formulations for Enhancement of Systemic Bioavailability of Curcumin. Res J Pharm Tech. 2018; 11(2): 661–6.
19.    Fawzy IM, Youssef KM, Ismail NSM, Gullbo J, Abouzid KAM. Design, synthesis and biological evaluation of Novel Curcumin Analogs with anticipated anticancer activity. Future J Pharm Sci. 2015; 1(1): 22–31.
20.    Liang G, Yang S, Jiang L, Zhao Y, Shao L, Xiao J, et al. Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. Chem Pharm Bull (Tokyo). 2008; 56(2): 162–167.
21.    Sardjiman SS, Reksohadiprodjo MS, Hakim L, Van der Goot H, Timmerman H. 1, 5-Diphenyl-1, 4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur J Med Chem. 1997; 32(7–8): 625–630.
22.    Selvam C, Jachak SM, Thilagavathi R, Chakraborti AsitK. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett. 2005; 15(7): 1793–7.
23.    Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 2013; 19(11): 2047–2069.
24.    Ameta SC, Punjabi PB, Ameta R, Ameta C. Microwave-Assisted Organic Synthesis: A Green Chemical Approach. First Edition. Canada: Apple Academic Press Inc; 2015.
25.    Keglevich G. Chapter 20 - Application of Microwave Irradiation in the Synthesis of P-Heterocycles. In: Brahmachari G, editor. Green Synthetic Approaches for Biologically Relevant Heterocycles [Internet]. Boston: Elsevier; 2015. p. 559–70. Available from: http://www.sciencedirect.com/science/article/pii/B9780128000700000207
26.    Nagar MK, Waghmare KR, Dhabale PN, Chanekar PD. Microwave Assisted Synthesis and Characterization of Phenytoin. Asian J Res Chem. 2011; 4(4): 619–20.
27.    Tripti J, V J, Vyas A, Shukla S. Microwave assisted extraction for phytoconstituents – An overview. Asian J Res Chem. 2009; 2(1): 19–25.
28.    Reksohadiprodjo M, Timmerman H, Margono S, Martono S, Hakim L, Hakim A, et al. Derivatives of benzylidene cyclohexanone, benzylidene cyclopentanone, and benzylidene acetone, and therapeutic uses thereof. 2003.
29.    Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D. The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res. 2008; 15(5): 394–404.
30.    Yadav P, Verma M, Ahmed S, Singh A, Yadav S, Zahra K. Risk Assessment of Diclofenac Sodium on Zebra Fish, Danio rerio: Protein Estimation in Tissues. Res J Pharm Tech. 2019;12(10):4635–8.
31.    Namasivayam SKR, Poornima V. An Investigation of Polymer Coated Metallic Nanoparticles Mediated Influence on Gut Microbiota of Zebra Fish (Danio rerio). Res J Pharm Tech. 2017; 10(7): 2221–5.
32.    Rajkumari RB, Sneha A, Rhea F, Anusha S. Induction of Cancer in Zebra Fish Using Simple Carcinogen. Res J Pharm Tech. 2018; 11(2): 628–30.
33.    Nagaraju B, Anitha A, Rathnamma VV. Evaluation of the acute Toxicity of Profenofos and its Effect on the Behavioral Changes in Freshwater Fish Labeo rohita. Res J Pharm Tech. 2013; 6(2) : 184–6.
34.    Parng C, Seng WL, Semino C, McGrath P. Zebrafish: A Preclinical Model for Drug Screening. ASSAY Drug Dev Technol. 2002 Nov 1; 1(1): 41–8.

Recomonded Articles:

Author(s): Nimbalkar V.V., Pansare P.M., Nishane B.B.

DOI: 10.5958/0974-360X.2015.00310.8         Access: Open Access Read More

Author(s): Priya P. Munshi, D.S. Mohale, R. Akkalwar, A.V. Chandewar

DOI: Not Available         Access: Open Access Read More

Author(s): S. R Suseem, Dhanish Joseph

DOI: 10.5958/0974-360X.2019.00067.2         Access: Open Access Read More

Author(s): Manju Rawat, SJ Daharwal, Deependra Singh

DOI:         Access: Open Access Read More

Author(s): Hayat M. Mukhtar, Vandna Kalsi

DOI: 10.5958/0974-360X.2018.00395.5         Access: Open Access Read More

Author(s): Gopinath G, Thirumal M, P. R. Kumar

DOI: 10.5958/0974-360X.2020.00362.5         Access: Open Access Read More

Author(s): Fathima Mariyam Niyas

DOI: 10.5958/0974-360X.2015.00182.1         Access: Open Access Read More

Author(s): Deepak Karki, Gururaj S. Kulkarni, Shivakumar Swamy, Sheeba FR

DOI: 10.5958/0974-360X.2017.00750.8         Access: Open Access Read More

Author(s): Som K. Madhvi, Manik Sharma, Javaid Iqbal, Mohd Younis

DOI: 10.5958/0974-360X.2019.00785.6         Access: Open Access Read More

Author(s): Yasmin A, Vijaya Bharathi R, Radha R

DOI: 10.5958/0974-360X.2019.00429.3         Access: Open Access Read More

Author(s): Sandesh More, Javed Mirza, Nanasaheb Kale, Mayur Gandhi, Rakesh Chaudhari

DOI: Not Available         Access: Open Access Read More

Author(s): Bharti Ahirwar, Dheeraj Ahirwar, Alpana Ram

DOI:         Access: Open Access Read More

Author(s): A. Rajendra Kumar, N. J. Muthukumar, A. Faridha

DOI: 10.5958/0974-360X.2019.00081.7         Access: Open Access Read More

Author(s): B. Thawkar, M. Kale, M. Oswal, K. Maniyar, K. Kadam, S. Kamat

DOI: 10.5958/0974-360X.2016.00044.5         Access: Open Access Read More

Author(s): Sri Vasavi Reddy A, J. Suresh, Hemant K.S. Yadav, Apurva Singh

DOI: Not Available         Access: Open Access Read More

Author(s): G. Muthu Bhupathi, K. Padmalatha, Akkiraju Anusha, Abdul Rameeza, Makina Geethika Sravanthi, Sunnam Praneetha.

DOI: 10.5958/0974-360X.2016.00377.2         Access: Open Access Read More

Author(s): Charde RM, Charde MS, Fulzele SV, Satturwar PM, Kasture AV, Joshi SB

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags