Author(s): Radhika Parasuram Rajam, Kavin Raj Muthukumar


DOI: 10.52711/0974-360X.2021.00778   

Address: Radhika Parasuram Rajam*, Kavin Raj Muthukumar
Department of Pharmaceutics, The Erode College of Pharmacy and Research Institute, Erode, Tamilnadu, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 8,     Year - 2021

Medical researchers found problem in targeting the drug delivery. The Nanotechnology has become highly competitive and rapidly evolving as more and more developments in delivery systems are being integrated to optimize the efficacy and cost effectiveness of therapy. The development of new and complex molecules Nano sponges has potential to solve this problem. Nano sponge drug delivery system has emerged as one of the most promising fields in pharmaceutics. Nano sponges consist of nonporous particles that can suspend or entrap a wide variety of substances, and then be incorporated into a dosage form. Nano sponge play vital role in targeting drug delivery in a controlled manner. Both lipophilic and hydrophilic drugs are incorporated in Nano sponge. The outer surface is typically porous, allowing controlled release of drug. Nano sponge delivery system (NDS) provides increased efficacy with enhanced safety, extended product stability, improved formulation flexibility, reduced side effects and superior aesthetic properties in an efficient and novel manner. Adding up they are non-irritating, non-mutagenic, non-allergenic and non-toxic. Topical drug delivery system also faced many problems like poor permeability, skin irritation, allergic reactions etc. The new developed colloidal system called Nano sponge has potential to overcome this problem. In short Nano sponges encompass many favorable characteristics which make them a versatile drug delivery vehicle. The present review explores on the preparation methods, applications of Nano sponges in the field of drug delivery.

Cite this article:
Radhika Parasuram Rajam, Kavin Raj Muthukumar. An Updated Comprehensive Review on Nanosponges – Novel Emerging Drug Delivery System. Research Journal of Pharmacy and Technology. 2021; 14(8):4476-4. doi: 10.52711/0974-360X.2021.00778

Radhika Parasuram Rajam, Kavin Raj Muthukumar. An Updated Comprehensive Review on Nanosponges – Novel Emerging Drug Delivery System. Research Journal of Pharmacy and Technology. 2021; 14(8):4476-4. doi: 10.52711/0974-360X.2021.00778   Available on:

1.    Joseph. T, Moore. R, Report, Drug delivery using nanotechnology technologies: markets and competitive environment. Institute of Nanotechnology, 2008, 93.
2.    Duncan R, Polymer conjugates as anticancer nanomedicines, Nature Reviews cancer, Nat Rev Cancer. 2006; (9): 688-701.
3.    Gharib NN, Ashnagar. A, Husseini. F, Nanosponges: The spanking accession in drug delivery- An updated comprehensive review, Scienti an Iranica, 2007; 14(4): 308-315.
4.    Deshmukh SS, poddarss, Solid porous microsphere: Emerging trend in pharmaceutical technology, Int. J. pharm. Bio. sci, 2011; 2(1): 364-377.
5.    Selvamuthukumar. S, Anandam. S, Kannan. K, Manavalan. R, Nanosponges, A novel class of   Drug delivery system Review J. pharm. Pharmacent. Sci, 2012; 15(1): 103-111.
6.    Renuka sharma, Roderick B, walker, Kamiapathak, Evaluation of kinetics and mechanism of Drug release from Econozole Nitrate. Nano sponges loaded Carbopol Hydrogel. Int. J. Pharm. Edu. Res, 2011; 45(1): 25-31.
7.    Nacht. S, kantz. M, The microsponge, A novel topical programmable Delivery system, In. Topical Drug delivery systems, David WO, Anfon. H. A, editors, New York, Marcel Dekker, 42, 1992; 299-325.
8.    Trotta. F, Cavalli. R, Tumiatti. W, Zerbinati. O, Rogero. C, Vallero. R Ultrasound assisted synthesis of cyclodextrin-based Nanosponges, 2007; E P 1,786: 841-881.
9.    David. F, Nanosponges drug delivery system more effective than direct injection, (Accessed Aug 22, 2014).
10.    Trotta. F, Tumiatti. V, Cavalli. R, Rogero. C, Mognetti. B, Berta. G, cyclodextrin-based nanosponges as a vehicle for Anti-tumoral drugs. W 2009/003656/Al 2009.
11.    Rahul Sampat Tambe, Pratik Waman Battase, Pooja Manohar Arane, Swapnil Anil Palve, Swatic Gokul Talele, Ghanashyam Chaudhari Review on nanosponges as a targeted drug delivery system, American Journal of Pharma Tech Research, 5(1), 2015, 215-224.
12.    Patel. G and Patel JK, Use of a microsponge in drug delivery systems, Pharmaceutical Processing 2008, 158.
13.    Khopade AJ, Jain S, Jain NK. The Microsponge. Eastern Pharmacists. 2012, 49-53.
14.    Nishama Jain, V Kusum Devi, Raman Dang, Uday Bhosale, Microsponges- A Novel Drug Delivery System, 2013; vol 15 issue 81, March-April
15.    Ajay Vishwakarma, Nanosponges, A Beneficiation for Novel Drug Delivery, Int J Pharm Tech res 2014; 6(1): 11-20.
16.    Ambel V, Shailendra S, Swarnalatha S, J. Incl Phenom Macrocycl Chem. 2008, 62, 23-42.
17.    Selvamuthukumar, Subramanian et al, Nanosponges, A novel class of drug delivery system-Review, J. Pharm Pharma sci, 2012; 15(1): 103-111.
18.    Lala R, Thorat A, Gargote C. Current trends in β- cyclodextrin based drug delivery systems. Int J Res Ayur Pharm, 2011; 2(5): 1520-1526.
19.    Jenny A, Merima P, Alberto F, Francesco T. Role of β- cyclodextrin nanosponges in polypropylene photooxidation, Carbohydrate Polymers, 2011; 86: 127– 135.
20.    Shankar S, Linda P, Loredana S, Francesco T, Vavia P, Dino A, Michele T, Gianpaolo T, Roberta C, Eur J Pharm Biopharm, 2010; 74: 193-201.
21.    Sharma R, Roderick B and Pattak K Evaluation of kinetics and mechanism of drug release from Econazole nitrate Nano sponges loaded carbopol hydrogel, Indian J. of Pharma Edu and Research 2011: 45(1): 25-31.
22.    Embil K., and Nacht S., Themicrosponge delivery system atopical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J Microencapsule, 1996; 13: 575–588.
23.    Mishra M.K., Shikhri M., Sharma R., and Goojar M.P., Optimization, formulation, development and characterization of Eudragit RS 100 loaded microsponges and subsequent colonic delivery. Int J of Drug Discovery and Herbal Research, 2011; 1(1): 8-13.
24.    Eki S., Lei T., Jingquan L., Zhongfan J., Cyrille B., and Thomas P. D., Biodegradable Star Polymers Functionalized with β-Cyclodextrin Inclusion Complexes. Biomacromolecules. 2009; 10(9): 2699- 2707.
25.    Davankov V.A., Ilyin M. M., Tsyurupa M. P., Timofeeva G.I., and Dubrovina L.V., From a Dissolved Polystyrene Coil to Intramolecularly-Hyper-Cross Linked “Nanosponge”. Macromolecules. 1996; 29(26): 8398–8403.
26.    Rajeswari C, Alka A, Javed A, Khar R K. Cyclodextrins in drug delivery: an update review. AAPS pharm Sci Tech, 2005; 6(2): E329-E357.
27.    Lala R, Thorat A, Gargote C. Current trends in β-cyclodextrin based drug delivery systems. Int J Res Ayur Pharm, 2011; 2(5): 1520-1526
28.    Martin A., Swarbrick J., and Cammarrata A., In: Physical Pharmacy-Physical Chemical Principles in Pharmaceutical Sciences, 2003, 3rd Ed. 1991: 527.
29.    Renuka S, Kamla P: Polymeric Nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation Pharm Dev Technol. 2011; 16(4): 367-376
30.    Reddy NM, Rehana T, Ramakrishna S, Chowdary PR, Prakash VD, β – Cyclodextrin complexes of celecoxib: Molecular modeling, characterizations and dissolution studies, AAPS Pharm Sci, 2004; 6(1): 1-9.
31.    Wester R., Patel R, Natch S., Leyden J., Melendres J, Maibach H., Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy, J. Am. Acad. Derm.,1991; 24: 720-726.
32.    Ramnik S, Nitin B, Jyotsana M, Horemat SN. Characterization of Cyclodextrin Inclusion Complexes –A Review. J Pharm Sci Tech, 2010; 2(3): 171-183
33.    Duchene D, Vaution C, Glomot F: Cyclodextrin, Their Value in pharmaceutical Technology. Drug Dev Ind Pharm, 2012; 12(1113): 2193-2215.
34.    Vavia PR, Swaminattan S, Trota F, Cavalli R: Applications of Nano sponges in Drug Delivery. XIII International Cyclodextrin Symposium, Turin. 14-17, May 2011.
35.    Zuruzi S., MacDonald N.C., Moskovits M., and Kolmakov A., Metal oxide "Nano sponges" as chemical sensors: Highly sensitive detection of hydrogen using nanosponge titania; Angewandte Chemie, 2007; 46 (23): 4298-4301.
36.    Swaminathan S., Vavia P.R., Trotta F., Formulation of beta cyclodextrins based nanosponges of itraconazole, J Incl Phenom Macro Chem., 2007; 57: 89-94
37.    Wong V.N., Fernando G., Wagner A.R., Zhang J, Kinsel G.R., Zauscher S., Dyer D.J., Separation of peptides with polyionic nanosponges for Maldims analysis. Langmuir, 2009; 25(3): 1459-65
38.    Swaminathan S., Cavalli R., Trotta F. and Vavia P.R., Invitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine Nano sponges of cyclodextrin. J Incl Phemon Macrocycl Chem., 2010, DOI10.1007/s10847-010-9765-9.
39.    Francesco Trotta, Marco Zanetti and Roberta Cavalli, Cyclodexrin-based Nano sponges as drug carriers Beilstein J. Org. Chem. 2012; 8:2091–2099
40.    Gilardi G., Trota F., Cavalli R., Ferruti P., Ranucc iE., Di Nardo G., Roggero C., Tumiatti V., Cyclodextrin nanosponges as carrier forbiocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies, 2009.  WO2009149883 A1.
41.    Wong V.N., Fernando G., Wagner A.R., Zhang J, Kinsel G.R., Zauscher S., Dyer D.J., Separation of peptides with polyionic nanosponges for MALDIM Sanalysis. Langmuir, 2009; 25(3): 1459-1465.
42.    D. Salisbury, Exploration: Research News at Vanderbilt University, June 1, 2010.
43.    Khalid AA, Pradeep RV, Francesco T, Roberta C: Cyclodextrin based Nano sponges for delivery of Resveratrol: In Vitro characterization, stability, cytotoxicity and permeation Study. AAPS Pharm Sci Tech, 2011; 12(1): 279-286.
44.    Renuka S., Roderick B.W., Kamla P., Evaluation of the kinetics and mechanism of drug release from Econazole Nitrate nanosponge loaded carbapol hydrogel. Ind J Pharm Edu., 2011; 45(1): 25-31.
45.    Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral Paclitaxel bioavailability after administration of Paclitaxel loaded Nano sponges. Drug Delivery, 2010; 17(6): 419-425.
46.    Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin – based Nano sponges for delivery of resveratrol: in vitro characterization, stability, cytotoxicity and permeation study. AAPS Pharm Sci Tech, 2011; 12(1): 279- 286
47.    Longo C, Gambara G, Espina V, Luchini A, Bishop B, Patanarut AS, Petricoin EF, Beretti F, Ferrari B, Garaci E, DePol A, Pellacani G, Liotta LA, Exp Dermatol, 2011; 20: 29-34.
48.    Schlichtenmayer M, Hirscher M, Nano sponges for Hydrogen storage, J Mater Chem, 2012; 22: 10134-10143.
49.    Mamba BB, Krause RW, Malefetse TJ, Gericke G, Sithole SP, Water Institute of Southern Africa (WISA) Biennial Conference 2008, Sun City, South Africa, Special Edition, 2009; 35(2): 56.
50.    Lee CL, Huang YC, Kuo LC, Nano sponges, Nanotech, 2006; 17: 2390-2395.
51.    Bolmal UB, Manvi FV, Rajkumar K, Palla SS, Paladugu A, Reddy KR, O2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for Li–air cells, Int J Pharm Sci, Nano Tech, 2013; 6(1): 1934-1944.
52.    Trotta F, Cavalli R, Vavia PR, Khalid A, J Incl Phenom Macrocycl Chem, 2011, Online first TM, DOI,10.1007/s10847-011-9926-5.
53.    Yadav G, Panchory H, J Drug Del Therap, 2013; 3(4): 151-155
54.    Ansari KA, Torne SJ, Vavia PR, Trotta F, Cavalli R. Paclitaxel loaded nanosponges: invitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr Drug Deliv. 2011; 8(2): 194-202.
55.    Trotta F, Tumiatti W, Cross linked polymers based on cyclodextrin for removing polluting agents, WO 03/085002, WO2009149883, 2009, A1.
56.    Jenny A, Merima P, Visakh PM, Alberto F, Giulio M, Cyclodextrin Nano sponges as Novel green flame retardants for PP, LLDPE AND PA6, Carbohydrate Polymers, 2012; 88: 1387-1394.
57.    Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S, Porous materials for oil spill cleanup: A Review of synthesis and absorbing Properties, J Porous Materials, 2003; 10: 159-170  
58.    Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral Paclitaxel bioavailability after administration of Paclitaxel loaded nanosponges. Drug Delivery, 2010; 17(6): 419-425.
59.    Yadav Geeta, Panchory Hiten, Nanosponges: a boon to the targeted drug delivery system, Journal of drug delivery and therapeutics, 2013; 3(4): 151-155.
60.    Nacht S, Kantz M. The Microsponge: A Novel Topical Programmable Delivery System, In: Topical Drug Delivery Systems. David WO, Anfon H A editors. New York: Marcel Dekker, 1992; 42: 299-325.
61.    Wong VN, Femando G, Wagner AR, Zhang J, Kinsel GR, Zauscher S, Dyer DJ. Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir, 2009; 25(3): 1459 65.
62.    Che-Ming J, Ronnie HF, Jonathan C, Brian TL, Liangfang Z, Nano sponges: The Spanking accession in drug delivery, Nature Nanotech Letters, 2013; 54: 1-5.  
63.    Yang CY, Liao TC, Shuai HH, Shen TL, Yeh JA, Cheng CM, Micro patterning of mammalian cells on inorganic – based nanosponges, Biomaterials, 2012; 33(20): 4988-4997

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available