Author(s): Lubna Abdulazeem, Mohammad J. AL Jassani, Mustafa A. Al-Sheakh


DOI: 10.52711/0974-360X.2021.00755   

Address: Lubna Abdulazeem1, Mohammad J. AL Jassani2*, Mustafa A. Al-Sheakh2
1DNA Research Center, University of Babylon, Iraq.
2Department of Microbiology, College of Science, AL-Karkh University of Science, Iraq.
*Corresponding Author

Published In:   Volume - 14,      Issue - 8,     Year - 2021

Silver nanoparticles are extensive, applied in different fields. Green methods using plants have been used as renewable resources for the synthesis of biodegraded nanomaterials, thereby providing economic and safe synthesis routes. The green synthesis was done using the aqueous Cumin seed extract and as a bio-reducer agent and aqueous AgNO3 solution as a precursor under various conditions. The formation of silver nanoparticles was confirmed by the observation of the shift in color from colorless to dark brown. The synthesized AgNPs were characterized using UV/V is spectroscopy, XRD, FTIR, and SEM. Also, the synthesized AgNPs were evaluated for their antioxidant activity (In-vitro) by DPPH assay. The bio-reduced mixture showed a maximum peak at around 388nm. The XRD peaks were observed at 38o and 46o, corresponding to 111, 200, 220, and 311, and the peak widening suggested a smaller particle size. The FTIR absorption spectra indicated the presence of residual plant extract as a reducing agent in the reaction mixture. Also, analysis of C. cyminum seed extract strongly suggested the presence of OH stretching in alcoholic and phenolic compounds as the main phytochemicals parts, which is supported by a strong peak at approximately 3296cm-1. The SEM images clearly showed that AgNPs were almost spherical in shape and 48.7nm in size. The synthesized AgNPs showed almost the same pattern of ascorbic acid-free radical scavenging activity except at concentrations 100 and 50µg/ml with significant differences (P=0.05) and it is dose-dependent. Silver nanoparticles can be synthesized on a large scale following a simple and eco-friendly method using C. cyminum seed extract that can be used as an effective antioxidant.

Cite this article:
Lubna Abdulazeem, Mohammad J. AL Jassani, Mustafa A. Al-Sheakh. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Cuminum cyminum (Cumin) seed Extract. Research Journal of Pharmacy and Technology. 2021; 14(8):4349-4. doi: 10.52711/0974-360X.2021.00755

Lubna Abdulazeem, Mohammad J. AL Jassani, Mustafa A. Al-Sheakh. Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Cuminum cyminum (Cumin) seed Extract. Research Journal of Pharmacy and Technology. 2021; 14(8):4349-4. doi: 10.52711/0974-360X.2021.00755   Available on:

1.    Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R. and Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surfaces, B: Biointerfaces, 2003, 28 (4), P: 313–318.
2.    Crabtree, J. H.; Burchette, R. J.; Siddiqi, R.A.; Huen, I. T.; Hadnott, L. L. and Fishman, A. The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit Dial Int., 2003, 23: 368-74.
3.    Chaloupka, K.; Malam, Y. and Seifalian, A.M. Nanosilver as new generation of nanoproduct in biomedical applications trends in Biotechnology. 2010, 28(11), P:580-8.
4.    Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; et al. Nanoparticles and microparticles for skin drug delivery.Advanced Drug Delivery Reviews. 2011, 63(6), P:470-91.
5.    Kelly, F.M. and Johnston, J.H. Colored and Functional Silver Nanoparticle−Wool Fiber Composites. ACS Applied Materials and Interfaces. 2011, 3(4). P:1083-92.
6.    Dankovich, T.A. and Gray, D.G. Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment Environmental Science & Technology. 2011, 45(5), P:1992-1998.
7.    Niraimathi, K.L.; Sudha, V.; Lavanya, R. and Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis Linn extract and their antimicrobial, antioxidant activities Colloids and Surfaces B: Biointerfaces. 2013, 102, P:288-91.
8.    Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S. and Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity Colloids and Surfaces B: Biointerfaces. 2013, 108, P:80-4.
9.    Jagtap, U.B. and Bapat, V. A Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops Products. 2013, 46, P:132-137.
10.    Thukkaram Sudhakar, Balashanmugam P, Jayapal Premkumar, Anisha A, Karthika D, Roshan Sapkota, Sakar Rijal. Antimicrobial activity of Silver Nanoparticles synthesized from Ficus benghalensis against Human Pathogens. Research J. Pharm. and Tech. 2017; 10(6): 1635-1640.
11.    Gayathri Kumararaja, Saneesha P N, Satheesh Kumar S, Shahana Parveen V V, Shaikh Fuzail Abdur Rahim, Shamna K V, Shamna P A, R Sundaraganapathy, R Gayathri. Development and Characterization of Silver nanoparticles (AgNPs) using Aqueous leaves broth of Artemisia vulgaris L., and its Anti-fungal activity. Research J. Pharm. and Tech. 2019; 12(10): 4822-4826.
12.    S. Bose, H. Shinde, K. Karikalan, P. Lalitha, A. K. A. Mandal. Antibacterial, Antiinflamatory, and Antiproliferative Activity of Silver Nanoparticles Synthesized from Leaf Extract of Azadirachta indica A. Juss. Research J. Pharm. and Tech 2016; 9(12): 2422-2426.
13.    Mukherjee, P.; Roy, M.; Mandal, B.P.; Dey, G.K.; Mukherjee, P.K.; Ghatak, J.; et al. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus. Asperellum. Nanotechnology. 2008, 19(7): 075103
14.    Biazar, E.; Majdi, Zafari, M.; Avar, M.; Aminifard, S.; Zaeifi, D.; et al. Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine. 2011, 1117.
15.    Sastry, M.; Ahmad, A.; Khan, M.I. and Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci, 2003, 85(2), P: 162-170.
16.    Binupriya, A.R.; Sathishkumar, M. and Yun, S.I. Mycro-crystallization of Silver Ions to Nanosized Particles by Live and Dead Cell Filtrates of Aspergillus oryzae var.viridisand Its Bactericidal Activity toward Staphylococcus aureus KCCM 12256 Industrial & Engineering Chemistry Research. 2010, 49, (2). P:852-8.
17.    Shankar, S.S.; Rai, A.; Ahmad, A. and Sastry, M. Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared Absorbing Optical. Coatings Chemistry of Materials; 2005, 17(3), P:566-72.
18.    Shankar, S.S.; Ahmad, A. and Sastry, M. Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnology Progress. 2003, 19(6). P:1627-31.
19.    Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10), P:105104
20.    Elavazhagan, T.; Elavazhagan, T. and Memecylon. edule leaf extract mediated green synthesis of silver and gold nanoparticles International Journal of Nanomedicine. 2011, 1265.
21.    S. Sathish Kumar, G. Melchias. Characterization of Biologically Synthesised Silver Nanoparticles from Euphorbia hirta. Asian J. Pharm. Tech. 2014; Vol. 4: Issue 1, Pg 01-05.
22.    GnanaDhas Gnana Jobitha, Green synthesis of Silver Nanoparticle using Elettaria Cardamomom and Assessment of its Antimicrobial Activity”, International Journal of Pharma Sciences and Research (IJPSR), ISSN: 2012, Vol 3, P:0975-9492.
23.    Praphulla Rao et al. Biosynthesis of Silver Nanoparticles using Lemon Extract and its Antibacterial Activity”, International Journal of Multidisciplinary and Current Research, ISSN, 2014, P: 2321-3124.
24.    Priti Ranjan, Merina Paul Das, M. and Sathish, Kumar. Green synthesis and Characterization of Silver nanoparticles from Nigella sativa and its application against UTI causing Bacteria” Journal of Academia and Industrial Research, ISSN: 2278-5213, 2013, Volume 2, Issue 1, p: 45-49.
25.    Lalitha, A.; et al., Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property”, Int. J. Curr. Microbiol. App. Sci. 2013, 2(6), P: 228-235.
26.    Sharma, G. A. and Sharma, R. Green Synthesis of Silver Nanoparticle Using Myristica Fragrans (Nutmeg) Seed Extract And Its Biological Activity”, Digest Journal of Nanomaterials and Biostructures 2014, Vol. 9, No. 1, 2014, p: 325 – 332.
27.    Seema GargRapid biogenic synthesis of silver nanoparticles using black pepper (Piper nigrum) corn extract”, International Journal of Innovations in Biological and Chemical Sciences, 2012, Vol. 3, P:5-10.
28.    Daisy, R. A. E.; Bavyaa, R. R. R. Green Synthesis and Characterization of Silver Nanoparticles using Fenugreek Seed Extract”, International Journal of Scientific and Research Publications, ISSN 2250-3153, 2013, Volume 3, Issue 7, p: 1-3.
29.    Akshya Kumar Ojha et alGreen Synthesis of Silver Nan Particles from Syzygium Aromaticum and their Antibacterial Efficacy”, Int. J.A.PS.BMS, ISSN‐2277‐9280, 2012, Volume 1(4), p:335-341.
30.    Hamady N.M. and Mohammed A.T. Green synthesis of silver Nanoparticles by using (Rheum) extract and its anti-bacterial activity. J. of University of Anbar for Pure Science, 2016, Vol.10, NO.2, pp. 10-17.
31.    Bettaieb Rebey, I.; Kefi, S.; Bourgou, S.; Ouerghemmi, I.; Ksouri, R.; Tounsi, M.S.; et al. Ripening Stage and Extraction Method Effects on Physical Properties, Polyphenol Composition and Antioxidant Activities of Cumin Cuminum cyminum L. Seeds. Plant Foods for Human Nutrition, 2014, 69(4). P:358-64.
32.    Gohari, A.R. and Saeidnia, S. A. Review on Phytochemistry of Cuminum cyminum seeds and its Standards from Field to Market. Pharmacognosy. Journal. 2011, 3(25), P:1-5.
33.    Johri, R.K. Cuminum cyminum and Carum carvi: An update Pharmacognosy Reviews. 2011, 5(9), P:63.
34.    Pandey, S.; Patel, M.K.; Mishra, A. and Jha, B. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance. PLOS ONE. 2016, 11(7)e0159349.
35.    Mnif S and Aifa S. Cumin (Cuminum cyminum L.) from Traditional and Uses to Potential Biomedical Applications. Chemistry Biodiversity. 2015, 12(5), P: 733-42.
36.    Gagandeep; Dhanalakshmi, S.; Mendiz, E.; Rao, A.R. and Kale, R.K. Chemopreventive Effects of Cuminum cyminum in Chemically Induced Forestomach and Uterine Cervix Tumors in Murine Model Systems. Nutrition and Cancer. 2003, 47(2), P:171-80.
37.    Sowbhagya, H.B. Chemistry, Technology, and Nutraceutical Functions of Cumin (Cuminum cyminum L): An Overview Critical Reviews in Food Science and Nutrition. 2013, 53(1), P: 1-10.
38.    Rahul Vikram Singh, Prabhakar Semwal, Taranjeet Kapoor. Medicinal Potential of Six Different Plant Species of Dehradun District, Uttarakhand. Asian J. Res. Pharm. Sci. 4(3): July-Sept. 2014; Page 134-139.
39.    Prabhakar Semwal, Taranjeet Kapoor, Rahul Vikram Singh. Comparative Phytochemical Screening of Six Different Plant Species of Uttarakhand Region. Asian J. Pharm. Tech. 2014; Vol. 4: Issue 2, Pg 50-52.
40.    P. Parvathi, R.V. Geetha. Spices and Oral Health. Research J. Pharm. and Tech. 7(2): Feb. 2014; Page 235-237.
41.    S. Sundar, K. Padmalatha, G. Helasri, M. Vasanthi, B. Sai Narmada, B. Lekhya, R. Naga Jyothi, T. Sravani. Anti-microbial Activity of Aqueous Extract of Natural Preservatives- Cumin, Cinnamon, Coriander and Mint. Research J. Pharm. and Tech. 2016; 9(7): 843-847.
42.    Iffath Badsha, Valli Nachiyar C. Elucidation of Antibacterial effects of Spices as Drinking Water Additives. Research J. Pharm. and Tech 2017; 10(11): 3795-3797.
43.    Sanjana Kumar, Rosheni Nair, Samta Gupta, Ahmad Abdullah, Priti Talwar, Palaniyandi Ravanan. Anti-Cancer and Neuro-Protective effect of Cuminum cyminum extracts on IMR32 Human Neuroblastoma Cell Lines. Research J. Pharm. and Tech 2018; 11(4): 1547-1552.
44.    Tdesco, S.; Blasco, J.; Doyle, H. and Redmond, G. Oxidative Stress and Toxicity of Gold Nanoparticles in Mytilus Edulis. J: Aquatic Toxicology, 2010, Vol. (100), P: 178–186.
45.    Muhammad Nadeem, Asad Riaz. Cumin (Cuminum cyminum) as a potential source of antioxidants”, Pakistan Journal of Food Sciences, 2012, Volume 22, Issue 2, P: 101-107.
46.    Desai, R. Size Distribution of Silver Nanoparticles: UV-Visible Spectroscopic Assessment”, Nanoscience and Nanotechnology Letters, 2012, Vol. 4, P:30–34.
47.    Stuart, B. “Infrared Spectroscopy: Fundamentals and Application, Analytical Techniques in the Sciences”, Wiley Publications.
48.    Dutrow, B.L. “X-ray Powder Diffraction (XRD)”, Geochemical Instrumentation and Analysis.
49.    Sadhasivam, S.; Shanmugam, P.; Veerapandian, M.; Subbiah, R. and Yun, K. Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals, 2012, Vol. 25(2), p:351-60.
50.    Kumar, N.; Mueen, A.; Dang, R. and Husain, A. Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone. J. Med. Plants Res. 2008, 2.P: 361-364.
51.    Shankar, S.S.; Ra, I A.; Ahmad, A. and Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science; 2004, 275(2), P: 496-502.
52.    Egorova, E.M. and Revina, A.A. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects; 2000, 168(1).P:87-96.
53.    Nadagouda, M.N.; Hoag, G.; Collins, J. and Varma, R.S. Green Synthesis of Au Nanostructures at Room Temperature Using Biodegradable Plant Surfactants. Crystal Growth & Design. 2009, 9,(11),P:4979-4983.
54.    Sharma, V.K.; Yngard, R.A. and Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 2009, 145(1-2),P:83-96.
55.    Chopade, B.; Ghosh, Patil, Ahire, Kitture, Jabgunde, et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine. Volume: 2012, 7, P: 483—496.
56.    Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces. 2010, 79(2), P:488-93.
57.    Mehrdad Forough and Khalil Farhadi. Biological and green synthesis of silver nanoparticles", Paper presented at the 6th Nanoscience and Nanotechnology Conference (NanoTRVI), Izmir, Turkey. 2010.
58.    Roya Karamian, Jamalaldin Kamalnejad. Green Synthesis of Silver Nanoparticles Using Cuminum cyminum Leaf Extract and Evaluation of Their Biological Activities. J. Nanostruct 2019, 9(1), P: 74-85.
59.    Wang, W.; Chen, Q.; Jiang, C.; Yang, D.; Liu, X.and Xu, S. One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(Nvinyl-pyrrolidone). Colloids Surf A Physicochem Eng Asp. 2007, 301,P:73-9.
60.    Awika, J.M..; Rooney, L.W.; Wu, X.; Prior, R.L. and Zevallos, L.C. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem.; 2003, 51, P:6657-6662.
61.    Chang, S.T.; Wu, J.H.; Wang. S.Y.; Kang, P.L.; Yang, N.S.and Shyur, LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem. 2001, 49, P:3420-4.
62.    Mauricio, M.D.; Guerra-Ojeda, S. and Marchio, P. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxidative Medicine and Cellular Longevity. 2018, 20.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available