Author(s): Munish Kakkar, Shreeja Singh, Tapan Behl, Sukhbir Singh, Neelam Sharma, Hema, Monika Sachdeva

Email(s): tapan.behl@chitkara.edu.in

DOI: 10.52711/0974-360X.2021.00685   

Address: Munish Kakkar1, Shreeja Singh1, Tapan Behl1*, Sukhbir Singh1, Neelam Sharma1, Hema1, Monika Sachdeva2
1Chitkara College of Pharmacy, Chitkara University, Punjab, India.
2Fatima College of Health Sciences, Alain, UAE.
*Corresponding Author

Published In:   Volume - 14,      Issue - 7,     Year - 2021


ABSTRACT:
Diabetic mellitus is common worldwide health problem which brings about different rigorous complications like retinopathy, nephropathy and numerous other lethal complications. Diabetic nephropathy is the major cause for blindness and renal failure in many of the developing countries. Hyperglycemia induced diabetic nephropathy gets elicited through improved development of reactive oxygen species in multiple cell types. The starting of organ damage or kidney failure shows some symptomatic effect or morphological changes as in one or both the kidneys like expansion or enlargement of kidneys from their original size and this enlargement process is known as nephromegaly. Microalbuminuria is the best possible predictable condition proceeding towards renal failure. This review briefly discussed about the diabetic nephropathy with regard to progression, angiogenic and non-angiogenic factors involved in pathogenesis and treatment of angiogenesis in diabetic nephropathy.


Cite this article:
Munish Kakkar, Shreeja Singh, Tapan Behl, Sukhbir Singh, Neelam Sharma, Hema, Monika Sachdeva. Update on the role of Angiogenesis in Diabetes associated Nephropathy. Research Journal of Pharmacy and Technology. 2021; 14(7):3947-4. doi: 10.52711/0974-360X.2021.00685

Cite(Electronic):
Munish Kakkar, Shreeja Singh, Tapan Behl, Sukhbir Singh, Neelam Sharma, Hema, Monika Sachdeva. Update on the role of Angiogenesis in Diabetes associated Nephropathy. Research Journal of Pharmacy and Technology. 2021; 14(7):3947-4. doi: 10.52711/0974-360X.2021.00685   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-82


REFERENCES:
1.    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine. 1995; 1(1): 27–31.
2.    Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes and Cancer. 2011. 2(12): 1097–1105.
3.    Ferrara N, Carver-Moore K, Chen H et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996; 380(6573): 439–442.
4.    Carmeliet P, Ferreira V, Breier G et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996; 380(6573): 435–439.
5.    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen, Science. 1989; 246(4935): 1306–1309.
6.    Bates DO, Curry FE. Vascular endothelial growth factor increases microvascular permeability via a Ca2+-dependent pathway. American Journal of Physiology. 1997; 273(2): H687–H694.
7.    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to´ vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996; 87(8): 3336–3343.
8.    Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Molecular Endocrinology. 1991; 5(12): 1806–1814.
9.    Tischer E, Mitchell R, Hartman T et al. The Human gene for vascular endothelial growth factor multiple protein forms are encoded through alternative exon splicing. Journal of Biological Chemistry. 1991; 266 (18): 11946–11954.
10.    Bates DO, Cui TG, Doughty JM et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Research. 2002; 62(14): 4123–4131.
11.    Sawano A, Takahashi T, Yamaguchi S, Aonuma M, Shibuya M. Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor, which is related to vascular endothelial growth factor. Cell Growth and Differentiation. 1996; 7(2): 213–221.
12.    Guo D, Jia Q, Song HY, Warren RS, Donner DB. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: Association with endothelial cell proliferation. Journal of Biological Chemistry. 1995; 270(12): 6729–6733.
13.    Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-𝛾 and DNA synthesis in vascular endothelial cells. EMBO Journal. 2001; 201(1): 2768–2778.
14.    Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEKMAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene. 1999; 18(13), pp: 2221–2230.
15.    Gerber HP, A. Murtrey Mc, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation. The Journal of Biological Chemistry. 1998; 273 (46): 30336– 30343.
16.    SokeQr S, Takashima S, Miao H, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998 92(6): 735–745.
17.    Kawamura H, Li X, Harper SJ, Bates DO, Claesson Welsh L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Research. 2008; 68(12): 4683–4692.
18.     Cebe Suarez S, Pieren M, Cariolato L et al. A VEGF-A splice´ variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cellular and Molecular Life Sciences. 2006; 63(17): 2067–2077.
19.     Pan Q, Chathery Y, Wu Y et al. Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. Journal of Biological Chemistry. 2007; 282(33): 24049– 24056.
20.    Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H et al. Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. Cell Adhesion & Migration. 2011; 5(4): 332–343.
21.    J. Plouet J, F. Moro F, S. Bertagnolli S et al. Extracellular cleavage of the vascular endothelial growth factor 189- amino acid form by urokinase is required for its mitogenic effect. Journal of Biological Chemistry. 1997; 272(20): 13390–13396.
22.    Østerby R, Nyberg G. New vessel formation in the renal corpuscles in advanced diabetic glomerulopathy. Journal of Diabetic Complications. 1987; 1(4): 122–127.
23.    Kanesaki Y, Suzuki D, Uehara G et al. Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. The American Journal of Kidney Diseases. 2005; 45(2): 288–294.
24.    Hohenstein B, Hausknecht, Boehmer, Riess, Brekken, Hugo CPM. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man, Kidney International. 2006; 69(9): 1654–1661.
25.    Sterby R, Bangstad HJ, Nyberg G, Rudberg S. On glomerular structural alterations in type-1 diabetes: Companions of early diabetic glomerulopathy, Virchows Archiv. 2001; 48(2): 129–135.
26.    MinW,. Yamanaka N. Three-dimensional analysis of increased vasculature around the glomerular vascular pole in diabetic nephropathy, Virchows Archiv A Pathological Anatomy and Histopathology. 1993; 42(3): 201–207.
27.    Nyengaard JR, Rasch R. The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia. 1993; 36(3): 189–194.
28.    Guo M, Ricardo SD JA, Deane JA, Shi M, Cullen-McEwen L, Bertram JF. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. Journal of Anatomy. 2005; 207(6): 813–821.
29.    Cooper ME, Vranes D, Youssef S et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes. 1999; 48(11): 2229–2239.
30.    Hovind P, Tarnow L, Oestergaard PB, Parving HH. Elevated vascular endothelial growth factor in type 1 diabetic patients with diabetic nephropathy, Kidney International. 2000; 57(75): S56–S61.
31.    Kim NH, Oh JH, Seo JA. Vascular endothelial growth factor (VEGF) and soluble VEGF receptor FLT-1 in diabetic nephropathy. Kidney International. 2005; 67(1): 167–177.
32.    Hanefeld M, Appelt D, Engelmann K et al. Serum and plasma levels of vascular endothelial growth factors in relation to quality of glucose control, biomarkers of inflammation, and diabetic nephropathy, Hormone and Metabolic Research. 2016; 48(8): 529–534.
33.    Shao Y, Lv C, Yuan Q, Wang Q. Levels of Serum 25(OH)VD3, HIF-1 𝛼, VEGF, VWF, and IGF-1 and Their Correlation in Type 2 Diabetes Patients with Different Urine Albumin Creatinine Ratio. Journal of Diabetes Research. 2016; 7
34.    Cha DR, Kim NH, Yoon JW et al. Role of vascular endothelial growth factor in diabetic nephropathy. Kidney International. 2000; 58: 104–S112.
35.    Baelde HJ, Eikmans M, Doran PP, Lappin DWP, De Heer E, Bruijn JA. Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. The American Journal of Kidney Diseases. 2004; 43(4): 636–650.
36.    Shulman K, Rosen S, Tognazzi K, Manseau EJ, Brown LF. Expression of vascular permeability factor (VPF/ VEGF) is altered in many glomerular diseases. Journal of the American Society of Nephrology. 1996; 7(5): 661–666.
37.    Ostendorf T, Kunter U, Eitner F et al. VEGf165 mediates glomerular endothelial repair. Journal of Clinical Investigation. 1999; 104(7): 913–923.
38.    Shimizu A, Masuda Y, Mori T et al. Vascular endothelial growth factor165 resolves glomerular inflammation and accelerates glomerular capillary repair in rat anti-glomerular basement membrane glomerulonephritis. Journal of the American Society of Nephrology. 2004; 15(10): 2655–2665.
39.    Brown LF, Berse Tognazzi K et al. Vascular permeability factor mRNA and protein expression in human kidney, Kidney International. 1992; 42(6): 1457–1461.
40.    Simon M, H. Grone HJ, Johren O et al. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. American Journal of Physiology. 1995; 268(2): 240–250.
41.    Katavetin P Katavetin P. VEGF inhibition and renal thrombotic microangiopathy. New England Journal of Medicine. 2008; 359(2): 205-206.
42.    Eremina V, Sood M, Haigh J et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. The Journal of Clinical Investigation. 2003; 111(5): 707–716.
43.     Liu E, Morimoto M, Kitajima S et al. Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions. Journal of the American Society of Nephrology. 2007; 18(7): 2094–2104.
44.    Eremina V, Jefferson JA, Kowalewska J et al. VEGF inhibition and renal thrombotic microangiopathy. The New England Journal of Medicine. 2008; 358(11): 129–1136.
45.    Veron D, Reidy KJ, Bertuccio C et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney International. 2010; 77(11): 989–999.
46.    Veron D, Bertuccio CA, Marlier A et al. Podocyte vascular endothelial growth factor (Vegf164) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia. 2011; 54(5): 1227–1241.
47.    Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. Vegfa protects the glomerular microvasculature in diabetes. Diabetes. 2012; 61(11): 2958– 2966.
48.    Sato W, Tanabe K, Kosugi T et al. Selective stimulation of VEGFR2 accelerates progressive renal disease. American Journal of Pathology. 2011; 179(1): 155–166.
49.    Nakagawa T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. American Journal of Physiology Renal Physiology. 2007; 292(6): F1665– F1672.
50.    Tyndall WA, Beam HA, Zarro C et al. Decreased platelet derived growth factor expression during fracture healing in diabetic animals. Clinical Orthopaedics and Related Research. 2003; 408: 319–330.
51.    Bitto A, Minutoli L, Galeano MR et al. Agiopoietin-1 gene transfer improves impaired wound healing in genetically diabetic mice without increased VEGF expression. Clinical Science 2008; 114: 707–718.
52.    Van Geest RJ, Klaasen I, Vogels IM, Van Noorden CJF, Schlingemann RO. Differential TGF-b signaling in retinal vascular cells: a role in diabetic retinopathy? Invest Ophthalmology Visual Science 2010; 51(4): 1857–1865.
53.    Hu J, Song X, He YQ et al. Heparanase and vascular endothelial growth factor expression is increased in hypoxia-induced retinal neovascularization. Invest Ophthalmology Visual Science 2012; 53(11): 6810–6817.
54.    Ma P, Luo Y, Zhu X et al. Retinal heparanase expression in streptozotocin-induced diabetic rats. Canadian Journal of Ophthalmology. 2010; 45(1): 46–51.
55.    Shafat I, Ilan N, Zoabi S, et al. Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One 2011; 22(2): e17312.
56.    Rops AL, van den Hoven MJ, Veldman BA, et al. Urinary heparanase activity in patients with Type 1 and Type 2 diabetes. Nephrology Dialysis Transplantation.2012; 7: 2853–2861.
57.    Kawanabe T, Kawakami T, Yatomi Y, Shimada S, Soma Y. Sphingosine 1-phosphate accelerates wound healing in diabetic mice. Journal of Dermatological Science.2007; 48(1): 53–60.
58.    Gaengel K, Genové G, Armulik A, Betsholtz Ch. Endothelial-Mural Cell Signaling in Vascular Development and Angiogenesis. Arteriosclerosis, thrombosis, and vascular biology. 2009; 29(5): 630–638.
59.    Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, and Hla T. Essential role of sphingosine 1–phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 2007; 2506–2516.
60.    Geoffroy K, Troncy L, Wiernsperger N, Lagarde M, El Bawab S. Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase ofsphingosine-1-phosphate levels. FEBS Letter 2005; 579(5): 1249–1254.
61.    Qazi Y, Maddula S, Ambati BK. Mediators of ocular angiogenesis. J Genet 2009; 88(4): 495–515.
62.    McVicar CM, Hamilton R, Colhoun LM et al. Intervention with an erythropoietin —derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 2011; 60(11): 2995–3005.
63.    Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. New England Journal of Medicine.2005; 353(8): 782–792.
64.    Liu Z-J, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 2008; 10(11): 1869–1882.
65.    Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. The Journal of Clinical Investigation.2007; 117(5): 1219–1222.
66.    Fadini GP, Avogaro A. It is all in the blood: the multifaceted contribution of circulating progenitor cells in diabetic complication. Experimental Diabetes Research 2012; 122-125.
67.    Baharivand N, Zarghami N, Panahi F, Dokht Ghafari MY, Mahdavi Fard A, Mohajeri A. Relationship between vitreous and serum vascular endothelial growth factors levels, control of diabetes and microalbuminuria in proliferative diabetic retinopathy. Clinical Ophthalmology. 2012; 185–191.
68.    Abe M, Maruyama N, Okada K, Matsumoto S, Matsumoto K, Soma M. Effects of lipid-lowering therapy with rosuvastatin on kidney function and oxidative stress in patients with diabetic nephropathy Journal of Atherosclerosis and Thrombosis. 2011; 1018–1028.
69.    Jeffcoate J, van Hautum WH. Amputation as a marker of the quality of foot care in diabetes. Diabetologia 2004; 47(12): 2051–2058.
70.    Gupta N, Mansoor S, Sharma A et al. Diabetic retinopathy and VEGF. The Open Ophthalmology Journal. 2013; 4–10.
71.    Stitt AW. AGEs and diabetic retinopathy. Invest Ophthalmolgy Visual Science 2010; 51(10): 4867–4874.
72.    Izuta H, Matsunaga N, Shimazawa M, Sugiyama T, Ikeda T, Hara H. Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body. Molecular Vision. 2010; 130–136.
73.    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation Research.2010; 107(9): 1058–1070.
74.    Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibriblast activation and kidney fibrosis. Frontiers in Endocrinology. 2013; 1–12.
75.    Tahergorabi Z, Khazaei M. Imbalance of angiogenesis in diabetic complications: the mechanism. International Journal of Preventive Medicine. 2012; 3(12): 827–838.
76.    Kota SK, Meher LK, Jammula S, Kota SK, Krishna SV, Modi KD. Abberant angiogenesis: the gateway to diabetic complications. Indian Journal of Endocrinology and Metabolism. 2012; 16(6): 918–30.
77.    Van Buren PN, Toto R. Hypertension in diabetic nephropathy: epidemiology, mechanisms, and management. Advances in Chronic Kidney Disease. 2011; 18(1): 28–41.
78.    Gil N, Goldberg R, Neuman T et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 2012; 61(1): 208–216.
79.    Bruhn-Olszewska B, Korzon-Burakowska A, Gabig-Cimińska M, Olszewski P, Węgrzyn A, Jakubkiewicz-Banecka J. Molecular factors involved in the development of diabetic foot syndrome. Medical Research Journal. 2012; 1(2): 507–513
80.    Skóra J, Biegus J, Pupka A, Barć P, Sikora J, Szyber P. Molecular basics of angiogenesis. Postepy Hig Med Dosw. 2006; 410–415.
81.    Presta M, Andres G, Leali D, Dell’Era P, Ronca R. Inflammatory cells and chemokines sustain FGF2-induced angiogenesis. European Cytokine Network. 2009; 20(2): 39–50.
82.    Izuta H, Chikaraishi Y, Adachi T et al. Extracellural SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients. Molecular Vision. 2009; 2663–2672.
83.    Ozturk BT, Bozkurt B, Kerimoglu H, Okka M, Kamis U, Gunduz K. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Molecular Vision. 2009; 1906–1914.
84.    Kang DH, Joly AH, Oh SW et al. Impaired angiogenesis in the remnant kidney model. I. Potentiale role of vascular endothelial growth factor and thrombospondin-1. Journal of the American Society of Nephrology. 2001; 12(7): 1434–1447.
85.    Yuam HT, Li HZ, Pitera JE et al. peritubular capillary loss after mouse acute nephrotoxicity correlates withdown-regulation of vascular endothelial growth factor-A and hypoxia inducible factor-1 alpha. Am J Pathol 2003; 2289–2301. K. N. Anitha, K. M. Geetha. Soluble Epoxide Hydrolase: A Pharmaceutical Target for Inflammation. Research Journal of Pharmacy and Technology. 2019; 10(12):513-5118.
86.    Ranadheer Chowdary P, Praveen. D, Vijey Aanandhi. M. A Prospective Study on Incidence of Dyslipidemia in Diabetes Mellitus. c2017; 10(2):431-433.
87.    Samidha Kamtekar*, Vrushali Keer. Management of Diabetes: A Review. Research Journal of Pharmacy and Technology. 2014; 7(9).
88.    Bortoloso E, Del Prete D, Dalla Vestra M, Gambaro G, Saller A, Antonucci F, Baggio B, Anglani F, Fioretto P. Quantitave and qualitative changes in vascular endothelial growth factor gene expression in glomeruli of patients with type 2 diabetes. European Journal of Endocrinology.2004; 150(6): 799–804.
89.    Bitar MS, Labbad ZN. Transforming growth factor-beta and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. Journal of Surgical Research.1996; 61(1): 113–119.
90.    Pavithra D, Praveen D, Vijey Aanandhi M. A Comprehensive review on Biomarkers for assessing Diabetic Kidney Disease. Research Journal of Pharmacy and Technology. 2017; 1(9):3242-3246
91.    Aniket Garud, Vyawahare NS. Hypoglycemic and Antihyperglycemic Prospective of marketed and Herbal Resilient Mediators. Hypoglycemic and Antihyperglycemic Prospective of marketed and Herbal Resilient Mediators. Research Journal of Pharmacy and Technology. 2019; 12(6):3012-3016.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available