Author(s):
Kun Ismiyatin, Mochamad Mudjiono, Sri Kunarti, Maria Liliana Santoso, Dalhar Hakiki, Windi Irsya
Email(s):
kun-is@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2021.00671
Address:
Kun Ismiyatin1*, Mochamad Mudjiono1, Sri Kunarti1, Maria Liliana Santoso2, Dalhar Hakiki2, Windi Irsya2
1Lecturer of Conservative Dentistry Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Resident of Conservative Dentistry Specialist Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 14,
Issue - 7,
Year - 2021
ABSTRACT:
This research aimed to determine whether irradiation of 405 nm diode laser with chlorophyll as photosensitizer could degrade the extracellular polymeric substance (EPS) of Enterococcus faecalis (E. faecalis) biofilm. The material for this study needs 25 biofilm formed by E. faecalis was divided equally into five groups. The control negative group (C-) consisted of E. faecalis biofilm, the control positive group (C+) consisted of E. faecalis biofilm and chlorophyll photosensitizers, and the other three treatment group (T1, T2, T3) consisted of E. faecalis biofilm and chlorophyll photosensitizers. Each treatment groups were irradiated for 90 second (s) for T1 group, 105 s for T2 group, and 120 s for T3 group with 405nm diode laser. The degradation EPS of E. faecalis’ biofilm was determined using Confocal Laser Scanning Microscope (CLSM). Irradiation duration affected the degradation EPS of E. faecalis’ biofilm. Chlorophyll with 120 s laser irradiation showed significant degradation EPS of E. faecalis’ biofilm compared to other groups (p < 0.05). Irradiation of diode laser 405nm with chlorophyll photosensitizer 120 s could degrade EPS of E. faecalis biofilm up to 97.51%.
Cite this article:
Kun Ismiyatin, Mochamad Mudjiono, Sri Kunarti, Maria Liliana Santoso, Dalhar Hakiki, Windi Irsya. Extracellular Polymeric Substance (EPS) Degradation of Enterococcus Faecalis biofilm after irradiation with 405nm diode laser. Research Journal of Pharmacy and Technology. 2021; 14(7):3869-3. doi: 10.52711/0974-360X.2021.00671
Cite(Electronic):
Kun Ismiyatin, Mochamad Mudjiono, Sri Kunarti, Maria Liliana Santoso, Dalhar Hakiki, Windi Irsya. Extracellular Polymeric Substance (EPS) Degradation of Enterococcus Faecalis biofilm after irradiation with 405nm diode laser. Research Journal of Pharmacy and Technology. 2021; 14(7):3869-3. doi: 10.52711/0974-360X.2021.00671 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-68
REFERENCES:
1. Pecora CN, Baskaradoss JK, Al-Sharif A, Al-Rejaie M, Mokhlis H, Al-Fouzan K, Pecora GE. Histological evaluation of the root apices of failed endodontic cases. Saudi Endod J. 2015; 5: 120-4.
2. Vineet R, Nayak M, Kotigadde S. Association of endodontic signs and symptoms with root canal pathogens: A clinical comparative study. Saudi Endod J. 2016; 6(2): 82-6.
3. Chatterjee Rajshekhar, Venugopal P, Jyothi K N, Jayashankar C M, Kumar S Anil, Kumar P Sarath. Effect of Sonic Agitation, Manual Dynamic Agitation on Removal of Enterococcus Faecalis Biofilm. Saudi Endod J. 2015; 5(2): 125-8.
4. Neelakantan P, Cheng CQ, Ravichandran V, Mao T, Sriraman P, Sridharan S, Subbarao C, Sharma S, Kishen A, Photoactivation of curcumin and sodium hypochlorite to enhance antibiofilm efficacy in root canal dentin, Photodiagnosis and Photodynamic Therapy. 2015; 12(1): 108-14.
5. Rosen E, Tsesis I, Elbahary S, Storzi N, Kolodkin-Gal I. Eradication of Enterococcus faecalis biofilms on human dentin. Front Microbiol. 2016; 7(16): 1-9, Article 2055.
6. Li Y, Pan J, Wu D, Tian Y, Zhang J, Fang J. Regulation of Enterococcus faecalis Biofilm Formation and Quorum Sensing Related Virulence Factors with Ultra-low Dose Reactive Species Produced by Plasma Activated Water. Plasma Chem Plasma Process. 2019; 39(1): 35-49.
7. Lin Ching-Hsuan, Chien Hsiung-Fei, Lin Ming-Hsuan, Chen Chueh-Pin, Shen Mandy and Chen Chin-Tin. Chitosan Inhibits the Rehabilitation of Damaged Microbes Induced by Photodynamic Inactivation. Int. J. Mol. Sci. 2018; 19(9): Article 2598
8. De Aguiar Coletti, TMSF., de Freitas, L. M., Almeida, A. M. F., and Fontana, CR. Optimization of Antimicrobial Photodynamic Therapy in Biofilms by Inhibiting Efflux Pump. Photomed. Laser Surg. 2017; 35: 378-85.
9. Araújo N.C., Fontana C.R., Gerbi M.E., and Bagnato V.S. Overall-mouth disinfection by photodynamic therapy using curcumin. Photomed. Laser Surg. 2012; 30: 96-100.
10. Suryani Dyah Astuti. An in-vitro antimicrobial effect of 405 nm laser diode combined with chlorophylls of Alfalfa (Medicago sativa L.) on Enterococcus faecalis. Dental Journal. 2018; 51(1): 47-51.
11. Derikvand N, Chinipardaz Z, Ghasemi S, Chiniforush N. The versatility of 980 nm diode laser in dentistry: A case series. J Lasers Med Sci. 2016; 7(3): 205-208. doi:10.15171/jlms.2016.36
12. Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016; 33: 67-73.
13. Ramirez-Mora T, Retana-Lobo C, Valle-Bourrouet G. Biochemical characterization of extracellular polymeric substances from endodontic biofilms. PLoS ONE. 2018; 13(11): Research Article (7 pages).
14. Maria Garcia-Diaz, Ying-Ying Huang, Michael R. Hamblin. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods. 2016; 109: 158-66.
15. Möllers KB, Mikkelsen H, Simonsen TI, et al. On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose. Carbohydr Res. 2017; 448: 182-186.
16. Hu X, Huang Y, Wang Y, Wang X,Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018; 9: 1299.
17. Khoobi, M., Farkhonde Masoule, S., Pourhajibagher, M., Safari, J. Photodynamic Inactivation of Endopathogenic Microbiota Using Curcumin- mediated Antimicrobial Photodynamic Therapy. J of Sciences, Islamic Republic of Iran, 2018; 29(3): 205-9.
18. Ehrenshaft M, Deterding LJ, Mason RP. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med. 2015; 89: 220-8
19. Cieplik F, Deng D, Crielaard W, et al. Antimicrobial photodynamic therapy–what we know and what we don’t. Crit Rev Microbiol. 2018; 44(5): 571-589.