Author(s):
Krishnat D. Dhekale, Ravindra N. Kamble
Email(s):
kravi_73@rediffmail.com
DOI:
10.52711/0974-360X.2021.00666
Address:
Krishnat D. Dhekale, Ravindra N. Kamble*
Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune 411038, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 14,
Issue - 7,
Year - 2021
ABSTRACT:
A dry-powder inhaler (DPI) carries medication to lungs as a dry powder, useful against respiratory diseases. The current research was endeavoured to examine the capabilities of Multi-walled carbon nanotubes (MWCNT) as a pulmonary transporter for directing cefdinir to cystic fibrosis (CF). Functionalized MWCNTs were loaded with cefdinir to formulate DPI (F-CEF FMWCNTs DPI) having efficient treatment against lung infections and were evaluated successfully. The outcomes demonstrated that cefdinir loaded FMWCNTs were non-toxic and accomplished 79.73 % entrapment with better flow properties. The optimized formulation had Mass Median Aerodynamic Diameter (MMAD), Fine particle fraction (FPF), and particle size of 3.45±0.09 µm, 58.52±1.06%, 5.25 ± 0.03 µm (CEF FMWCNT DPI) and 4. 29±0.16µm 38.74±1.02%, 7.54 ± 0.02 µm (C-DPI) respectively. The loaded nanotubes showed 72. 63 % release after 15 hours in a controlled manner. The outcome of work recognized a unique, simple, and stable product having improved drug loading and increased dispersibility of carbon nanotubes (CNTs) thus improved bioavailability at a lung infection place with less adverse actions.
Cite this article:
Krishnat D. Dhekale, Ravindra N. Kamble. Development of cefdinir loaded Functionalized carbon Nanotubes dry powder Inhaler for the Treatment of cystic Fibrosis. Research Journal of Pharmacy and Technology. 2021; 14(7):3839-5. doi: 10.52711/0974-360X.2021.00666
Cite(Electronic):
Krishnat D. Dhekale, Ravindra N. Kamble. Development of cefdinir loaded Functionalized carbon Nanotubes dry powder Inhaler for the Treatment of cystic Fibrosis. Research Journal of Pharmacy and Technology. 2021; 14(7):3839-5. doi: 10.52711/0974-360X.2021.00666 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-63
REFERENCES:
1. Patil JS. Sarasija S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India: Official Organ of Indian Chest Society. 2012; 29 (1):44.doi.org/10.4103/0970-2113.92361
2. Shaji J. Shaikh M. Current development in the evaluation methods of pulmonary drug delivery system. Indian Journal of Pharmaceutical Sciences. 2016; 78(3):294-306. doi.org/10.4172/pharmaceutical-sciences.1000118
3. Frijlink HW. De Boer AH. Dry powder inhalers for pulmonary drug delivery. Expert Opinion on Drug Delivery. 2004; 1(1):67-86.doi.org/10.1517/17425247.1.1.67.
4. Islam N. Gladki E. Dry powder inhalers (DPIs)—a review of device reliability and innovation. International Journal of Pharmaceutics. 2008; 360(1-2):1-1. Doi.org/ 10.1016/j.ijpharm.2008.04.044.
5. Ballesteros B. Tobias G. Shao L. Pellicer E. Nogués J. Mendoza E. Green ML et al Steam Purification for the Removal of Graphitic Shells Coating Catalytic Particles and the Shortening of Single‐Walled Carbon Nanotubes. Small. 2008; 4(9):1501-6.doi.org/10.1021/ja061680u
6. Singh B. Lohan S. Sandhu PS. Jain A. Mehta SK. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. In Nano Biomaterials in Medical Imaging 2016; 455-478, William Andrew Publishing. https://doi.org/10.1021/nn700040t
7. Mehra NK. Jain K and Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discovery Today. 2015; 20(6):750-9. doi.org/10.1016/j.drudis.2015.01.006
8. Klinger-Strobel M. Lautenschläger C. Fischer D. Mainz JG. Bruns T. Tuchscherr L. Pletz MW. Makarewicz O. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis–where do we stand?. Expert Opinion on Drug Delivery. 2015; 12(8): 1351-74. Doi.org/ 10.1517/17425247.2015.1007949.
9. Strausbaugh SD. Davis PB. Cystic Fibrosis: A Review of Epidemiology and Pathology. Clinics in Chest Medicine.2007; 28(2): 279-88. doi.org/ 10.1016/j.ccm.2007.02.011.
10. Palmer GC. Whiteley M. Metabolism and pathogenicity of Pseudomonas aeruginosa infections in the lungs of individuals with cystic fibrosis. Metabolism and Bacterial Pathogenesis. 2015;185-213.https://doi.org/10.3389/fmicb.2015.00321
11. MizgerdJP. Lung infection—a public health priority. PLoS Med. 2006; 3(2):e76. https://doi.org/10.1371/journal.pmed.0030076
12. Oliver A. Cantón R. Campo P. Baquero F. Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000; 288(5469): 1251–1253. doi.org/10.1126/science.288.5469.1251.
13. Guay DR. Cefdinir: an advanced-generation, broad-spectrum oral cephalosporin. Clinical Therapeutics 2002; 24(4):473–489. doi.org/10.1016/s0149-2918(02)85125-6
14. Sader HS. Jones RN. Cefdinir: an oral cephalosporin for the treatment of respiratory tract infections and skin and skin structure infections. Expert Review of Anti-infective Therapy 2007; 5(1):29–43. Doi.org/ 10.1586/14787210.5.1.29.
15. Perry CM. Scott LJ. Cefdinir. Drugs 2004; 64(13): 1433–1464. doi.org/10.2165/00003495-200464130-00004
16. Ghoshal S. Kushwaha SKS. Srivastava M. Tiwari P. Drug loading and release from functionalized multiwalled carbon nanotubes loaded with 6-mercaptopurine using incipient wetness impregnation method. Am J Adv Drug Del. 2014; 2(2):213–223.
17. Misra A. Tyagi PK. Rai P. Misra DS. FTIR Spectroscopy of multiwalled carbon nanotubes: a Simple approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology 2007; 7(6):1820–1823.
18. Li Y. Wang T. Wang J. Jiang T. Cheng G. Wang S. Functional and unmodified MWNTs for delivery of the water-insoluble drug Carvedilol–A drug-loading mechanism. Applied Surface Science 2011; 257(13): 5663–5670. https://doi.org/10.1021/ar020259h
19. Tang L. Zhang H. Han J. Wu X. Zhang Z. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites Science and Technology 2011; 72(1):7–13. https://doi.org/10.1016/j.compositesa.2014.04.023
20. Mali AJ. Pawar AP. Bothiraja C. Improved lung delivery of budesonide from biopolymer based dry powder inhaler through natural inhalation of rat. Materials Technology. 2014; 29(6): 350–357. https://doi.org/10.1179/1753555714Y.0000000163
21. Bansal S. Aggarwal G. Chandel P. Harikumar SL. Design and development of cefdinirniosomes for oral delivery. J Pharm Bioallied Sci. 2013; 5(4): 318–25.doi.org/ 10.4103/0975-7406.120080
22. Abdullah EC. Geldart D. The use of bulk density measurements as flowability indicators. Powder Technology. 1999; 102(2):151–165. doi.org/ 10.1208/s12249-013-9994-5
23. Honmane S. Hajare A. More H. Osmani RAM. Salunkhe S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. Journal of Liposome Research. 2019; 29(4):332–342. doi.org/10.1080/08982104.2018. 1531022
24. Blott SJ. Croft DJ. Pye K. Saye SE. Wilson HE. Particle size analysis by laser diffraction. Geological Society, London, Special Publication. 2004; 232(1):63-73. doi.org/10.1144/GSL.SP. 2004.232.01.08
25. Shazly G. Nawroth T. Langguth P. Comparison of dialysis and dispersion methods for in vitro release determination of drugs from multilamellar liposomes. Dissolution Technologies. 2008; 15(2):7. doi.org/10.14227/DT150208P7
26. Dhumal RS. Biradar SV. Paradkar AR. York P. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery. International Journal of Pharmaceutics. 2009; 368(1–2):129–137. doi.org/: 10.1016/j.ijpharm.2008.10.006
27. Hassan MS. Lau RWM. Effect of particle shape on dry particle inhalation: study of flowability, aerosolization, and deposition properties. AAPS Pharm Sci Tech. 2009; 10(4): 1252. doi.org/10.1208/s12249-009-9313-3
28. Ma-Hock L. Strauss V. Treumann S. Küttler K. Wohlleben W. Hofmann T. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Particle and Fibre Toxicology. 2013; 10(1): 23. doi.org/ 10.1186/1743-8977-10-23
29. Ji JH. Jung JH. Kim SS. Yoon JU. Park JD. Choi BS. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicity. 2007; 19(10):857-87. doi.org/10.1080/08958370701432108.
30. Jafarinejad S. Gilani K. Moazeni E. Ghazi Khansari M. Najafabadi AR. Mohajel N. Development of chitosan-based nanoparticles for pulmonary delivery of itraconazole as dry powder formulation. Powder Technology. 2012; 222:65–70. doi.org/10.4103/0250-474X.110584
31. Osswald S. Havel M. Gogotsi Y. Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. Journal of Raman Spectroscopy An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 2007; 38(6):728–736. doi.org/10.1002/jrs.1686
32. Auriemma A.S. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity onCuFi1 cells. Int J Pharm.2012; 426 (1-2): 100-107. doi.org/10.1016/j.ijpharm.2012.01.026
33. Dolatabadi JEN. Hamishehkar H. Valizadeh H. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance. Drug Development and Industrial Pharmacy. 2015; 41(9):1431–7. doi.org/ 10.3109/03639045.2014.956111.
34. Siepmann J. Faisant N. Akiki J. Richard J. Benoit JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory. Journal of Controlled Release.2004; 96(1):123–134. doi: 10.1016/j.jconrel.2004.01.011.