Author(s):
Amaal S. Sadiq, Entesar O. Al-Tamimi
Email(s):
amaalsameer74@gmail.com
DOI:
10.52711/0974-360X.2021.00644
Address:
Amaal S. Sadiq1, Entesar O. Al-Tamimi2
1Department of Chemistry, College of Science for Woman, University of Baghdad, Al-Jadiriya, Baghdad, Iraq.
2Department of Chemistry, College of Science, University of Baghdad, Al-Jadiriya, Baghdad, Iraq.
*Corresponding Author
Published In:
Volume - 14,
Issue - 7,
Year - 2021
ABSTRACT:
The purpose of the study is to synthesize and characterize a new polytriazole derivative from polyacryloyl chloried, first reaction of polyacryloyl chloride with hydrazine hydrate in the presence of DMF as a solvent to obtained acid hydrazide (1) than reacted with different amide to give poly 1,2,4-triazole derivatives(1a-1c). Newly synthesized compounds were characterized by spectral methods [13C-NMR, 1H-NMR, and FTIR] and calculated some of its physical properties. Also, we worked theoretical study involving calculated the geometric configurations, total energy, dipole moment etc..,. In addition, the inhibition effect of the synthesized compounds (1a-1c) on corrosion of stainless steel in 1M HCl were studied by method of weight loss. The results of weight loss measurements showed that corrosion inhibition efficiency by increasing the concentration of organic inhibitors for stainless steel in 1M HCl solution at 30oC.
Cite this article:
Amaal S. Sadiq, Entesar O. Al-Tamimi. Synthesis, Characterization of New Polytriazole Derivatives from Polyacryloyl chloride and Theoretical with Corrosion Inhibitor Study for Stainless steel in acidic medium. Research Journal of Pharmacy and Technology. 2021; 14(7):3721-6. doi: 10.52711/0974-360X.2021.00644
Cite(Electronic):
Amaal S. Sadiq, Entesar O. Al-Tamimi. Synthesis, Characterization of New Polytriazole Derivatives from Polyacryloyl chloride and Theoretical with Corrosion Inhibitor Study for Stainless steel in acidic medium. Research Journal of Pharmacy and Technology. 2021; 14(7):3721-6. doi: 10.52711/0974-360X.2021.00644 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-41
REFERENCES:
1. Dieter, A., Schluter, Craig, H., and Junji, S., Synthesis of Polymers: New Structures and Method Wiley. ISBN: 2012; 978-3-527-32757-7:11841.
2. Zena, G. Al – Rekab. Synthesis of Poly [(N – Acryl) Substituted Hydrazone] from Condensation of Poly Acryloyl Chloride with Various Schiff Bases. Journal of Al-Nahrain University. 2011; 14(2): 19-28.
3. Potts, K.T. Chem. Rev. 1961; 61-87.
4. Menendez, C., Gau, S., Lherbt, C., Rodriguez, F., Inard, C., Pasca, M.R., and Baltas, M. ChemInform. 43 Article first published online: 23Feb (2012).
5. Poonam, K., and Nalini, P., Synthesis of new biologically active triazolo, tetrazolo and coumarinoyl derivatives of isocoumarins. Org. Commun. 2013; 6(4): 148-161.
6. Upmanyu, N., Gupta, J. K., Shah, K., and Mishra, P. Synthesis of new 1, 2, 4-triazoles as anti-inflammatory and anti-nociceptive agents. Pharmaceutical Chemistry Journal. (2011; 45(7): 433–439.
7. Y. Jagannadham, V. Rateesh, B. Srinivas, B. Ramadevi, and B. Prasanna. Synthesis of Substituted phenyl Tetrazolo and Triazolo Pyrimidin-yl-2H-Chromen-2-ones. 2014; 2(12): 125-131.
8. Demirbaş, N., Ug̵urluog̵lu, R., and Demirbaş, A. Synthesis of 3-alkyl (Aryl)-4-alkylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5-dihydro-1H-1,2,4-triazol-5-ones as antitumor agents. Bioorganic and Medicinal Chemistry. 2002; 10(12): 3717–3723.
9. Turan-Zitouni, G., Kaplancikli, Z., Erol, K., and Kiliç, F. Synthesis and analgesic activity of some triazoles and triazolothiadiazines. ll Farmaco. 1999; 54(4): 218–223.
10. M. Ghannoum, and L.B. Rice, Antifungal agents: mode of action, mechanism of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999; 12: 501-517.
11. Georgeta S., 1,2,4- Triazoles as intermediates for the synthesis of Hybrid Molecules. FARMACIA. 2016; 64(4): 549-552.
12. Wan, L., Tian, J., Huang, J., Hu, Y., Huang, F., and Du, L. Synthesis and Characterization of a Novel Polytriazole. Journal of Macromolecular Science, Part A, 2007; 44(2): 175–181.
13. Quraishi, M., and Sharma, H. K. 4-Amino-3-butyl-5-mercapto-1,2,4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid. Materials Chemistry and Physics. 2003; 78(1): 18–21.
14. Suaad, M. H. Al-Majid, Huda J. A. Al-Adhami. Synthesis and Evaluation Antibacterial Activity of Some New Substituted 5-Bromoisatin Containing Five, Six Heterocyclic Ring. Baghdad Science Journal.2016; 13: 345-359.
15. Shantaram, G., K., S. Appala, R., Popat Baban, M., and Ramdas, B., P., Synthesis and Pharmacological Evaluation of Some New Pyrimidine Derivatives Containing 1,2,4-Triazole. Advanced Pharmaceutical Bulletin.2012; 2(2): 213-222.
16. Scendo, M., and Hepel, M. Inhibiting properties of benzimidazole films for Cu(II)/Cu(I) reduction in chloride media studied by RDE and EQCN techniques. Corrosion Science, 2007; 49(8): 3381–3407
17. Scendo, M. (2007). Corrosion inhibition of copper by purine or adenine in sulphate solutions. Corrosion Science, 49(10), 3953–3968.
18. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, John Wiley and Sons Ltd, Chichester, 2000.
19. Y. Ning, R. Ernst, Interpretation of Organic Spectra, Wiley; 1st Edition, 2011.
20. Dikin', G. Yao S., Bohoussou, K. V., Kone, M. Guy-R., Ouedraogo, A. and Trokourey, A., Cefadroxil Drug as Corrosion Inhibitor for Aluminum in 1 M HCl Medium: Experimental and Theoretical Studies. Journal of Applied Chemistry. 2018; 24-36.
21. Mahir, H. M., Abdul-Wahab, A. S., and Hussein, H. Al-S. Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract. J. Chem. Pharm. Res., 2014; 6(5) :996-1001.
22. Khamis, E., Bellucci, F., Latanision, R. M., and El-Ashry, E. S. H. Acid Corrosion Inhibition of Nickel by 2-(Triphenosphoranylidene) Succinic Anhydride. CORROSION. 1991; 47(9): 677–686.
23. Bentiss, F., Lebrini, M., and Lagrenée, M. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system. Corrosion Science. 2005; 47(12): 2915–2931.
24. I. B. Obot, Z. M. Gasem and S. A. Umoren, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 510–522.
25. K. Zhang, B. Xu, W. Yang, X. Yin, Y. Liu and Y. Chen, Corros. Sci., 2015, vol. 90, pp. 284–295.
26. W. Li, Q. He, C. Pei and B. Hou, Electrochim. Acta, 2007, vol. 52, pp. 6386-6396.
27. Martinez S., Mater. Chem. Phys., 2003, vol. 77, pp. 97-102.
28. Cao Z., Tang Y., Cang H., Xu J., Lu G. and Jing W., Corros. Sci., 2014, vol. 83, pp. 292-298.
29. Kumar S., Sharma D. Yadav, P. and Yadav M., Ind. Eng. Chem. Res., 2013, vol. 52, pp. 14019-14029.
30. Sastri V.S., Perumareddi J.R., Corros Sci., 1997, vol. 53: pp. 617–622.
31. Dewar M.J.S., Thiel W., J. Am. Chem. Soc., 1977, vol. 99, pp. 4899–4907.
32. Dutta A., Saha S., Banerjee P. and Sukul D., Corros. Sci., 2015, vol. 98, pp. 541–550.
33. Lesar A. and Milosev I., Chemical Physics Letters, 2009, vol. 483, pp. 198-203.
34. Obot I.B. and Gasem Z.M., Corros. Sci., 2014, vol. 83, pp. 359-366.