Author(s): Hanaa A. Alahmad, Sawsan H. Madi, Adnan M. Ikhtiar

Email(s): alahmdhana@gmail.com

DOI: 10.52711/0974-360X.2021.00635   

Address: Hanaa A. Alahmad1, Sawsan H. Madi2, Adnan M. Ikhtiar3
1Phd Student of Pharmacology, Pharmacy College, Damascus University, Syrian Arab Republic.
2Professor of Pharmacology, Pharmacy College, Damascus University, Syrian Arab Republic.
3Flow Cytometry Lab., Dept. Mol. Biol. and Biotech., Syrian Atomic Energy Commission, Damascus, PO Box: 6091, Syrian Arab Republic.
*Corresponding Author

Published In:   Volume - 14,      Issue - 7,     Year - 2021


ABSTRACT:
Purpose: Investigate the efficacy of protein kinase activators in enhancing the activity of ZFN and maintain the average of CD4/CD8 in the treatment of AIDS by using protein kinase activators like bryostatin and PMA. Materials and methods: Balb/C mice were infected with hiv-1ADA (tCID50 102×5 per mouse), A week later, ZFN was then injected with a concentration of 3,100ng, PMA with a dose 100ng per animal and Bryostatin 40 µg/kg, intraperitoneally. And Antiviral treatment was continued for seven weeks, using oral tenofovir at a dose of 4.5mg, emtricitabine at a dose of 3mg, and efavirenz at a dose of 18mg, daily At the end of the study, blood samples were withdrawn from the retro-orbital mouse eye and CD4/CD8 was measured by flow cytometry. Results: The pathophysiological changes decreased in the group treated with ZFN compared to the control infected group with significant differences, but there are no significant differences between and the groups treated with ZFN+Bry (HIV+ Z +B), ZFN +PMA (HIV+ Z +PMA) and ART group with CD4/CD8 ratio in these compared to the infected irradiated control group (HIV). Conclusion: Bryostatin and PMA cannot enhance the effect of ZFN in treating HIV infection.


Cite this article:
Hanaa A. Alahmad, Sawsan H. Madi, Adnan M. Ikhtiar. The role of Bryostatin and PMA (Phorbole Myristate Acetate) in enhancing ZFN’s Anti-HIV effects. Research Journal of Pharmacy and Technology. 2021; 14(7):3674-8. doi: 10.52711/0974-360X.2021.00635

Cite(Electronic):
Hanaa A. Alahmad, Sawsan H. Madi, Adnan M. Ikhtiar. The role of Bryostatin and PMA (Phorbole Myristate Acetate) in enhancing ZFN’s Anti-HIV effects. Research Journal of Pharmacy and Technology. 2021; 14(7):3674-8. doi: 10.52711/0974-360X.2021.00635   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-32


REFERENCES:
1.    PM. Patil, P.C., Megha Sahu, NJ Duragkar, Review Article on Gene Therapy. Research J. Pharmacology and Pharmacodynamics, 2012; 4(2): 77-83.
2.    text=Gene٪20therapy٪20is٪20an٪20experimental،of٪20using٪20drugs٪20or٪20surgery
3.    Neetu Jangir, S.B., Nitya Vyas, Isolation and Detection of Aspergillus and Candida Species in Sputum of HIV Positive Patients and It Correlate with CD4. Research J. Pharm. and Tech, 2012; 5(6): 785-788.
4.    Chan, E., G.J. Towers, and W.J.V. Qasim, Gene therapy strategies to exploit TRIM derived restriction factors against HIV-1. 2014; 6(1): 243-263.
5.    RT Kakade, S.F., PS Bafna, AK Tilva, Overview on Acquired immunodeficiency syndrome Research J. Pharmacology and Pharmacodynamics, 2012; 4(3): 158-162.
6.    Yogesh Vaishnav, A.T., Chanchal Deep Kaur, Shekhar Verma, Achal Mishra, Sanmati Kumar Jain, Piyush Ghode., QSAR Analysis of some N, N-diphenyl urea derivatives as CCR5 Receptor Antagonist. Research J. Pharm. and Tech, 2018; 11(9): 3802-3810.
7.    Manjunath, N., et al., Newer gene editing technologies toward HIV gene therapy. 2013; 5(11): 2748-2766.
8.    Allers, K. and T.J. C.O.I.V. Schneider, CCR5Δ32 mutation and HIV infection: basis for curative HIV therapy. 2015; 14: 24-29.
9.    Hütter, G., et al., CCR5 targeted cell therapy for HIV and prevention of viral escape. 2015; 7(8): 4186-4203.
10.    Qu, X., et al., Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. 2013; 41(16): 7771-7782.
11.    Holt, N., et al., Zinc finger nuclease-mediated CCR5 knockout hematopoietic stem cell transplantation controls HIV-1 in vivo. 2010; 28(8): 839.
12.    Tebas, P., et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. 2014; 370(10): 901-910.
13.    Wang, W., et al., CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. 2014; 9(12): p. e115987.
14.    Wu, J.-Y., et al., Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. 1992; 148(5): 1519-1525.
15.    Care, I.o.L.A.R.C.o. and U.o.L. Animals, Guide for the care and use of laboratory animals. 1986: US Department of Health and Human Services, Public Health Service, National ….
16.    Gorantla, S., et al., Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2−/− γc−/− mice. 2007; 81(6): 2700-2712.
17.    Berkow, R.L., et al., In vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity. 1993; 53(12): 2810-2815.
18.    Sango, K., et al., Highly Active Antiretroviral Therapy Potently Suppresses HIV Infection in Humanized Rag2-/-γc-/-Mice. 2010; 26(7): 735-746.
19.    Li, L., et al., Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. 2013; 21(6): 1259-1269.
20.    Février, M., K. Dorgham, and A. Rebollo, CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses, 2011; 3(5): 586-612.
21.    Nadu, T., A Study to Compare and Correlate the Knowledge and Attitude Regarding HIV/AIDS among Young Married and Juliet Sylvia, Basavanthappa, Richard. Unmarried Women in Selected Urban Slums of Madurai, Asian J. Nur. Edu. and Research, 2012; 2(3): 118-125.
22.    Behera, a., HIV/AIDS Among Displaced Women. Asian Journal of Management, 2018; 9(1): 529-530.
23.    Hathoikim Misao, I.L., Mecievinü Rhetso, Nihali Devi Rana, Phibadashisha Chyne, Y Zuchanbeni Humtsoe., Knowledge and attitude towards HIV/AIDS among undergraduate students. Asian J. Nursing Education and Research, 2020; 10(2): 189-193.
24.    Hoda, S.A. and E. Cheng, Robbins basic pathology. 2017, Oxford University Press US.
25.    Mayur S. Jain, S.D.B., Review on-Mogamulizumab is a Humanized Monoclonal Antibody (mAb) directed against CC chemokine receptor 4 (CCR4) for the treatment of Mycosis Fungoides (MF). Asian J. Pharm. Res., 2019; 9(4): 260-262.
26.    Greenwood, D., et al., Medical Microbiology E-Book: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control. With STUDENT CONSULT Online Access. 2012: Elsevier Health Sciences.
27.    Zhang, J., et al., Evolution of coreceptor utilization to escape CCR5 antagonist therapy. 2016; 494: 198-214.
28.    Nakano, Y., et al., Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1. 2014; 452: 117-124.
29.    Murray, P.R., K.S. Rosenthal, and M.A. Pfaller, Medical Microbiology E-Book. 2020: Elsevier Health Sciences.
30.    Herrera-Carrillo, E., Y.P. Liu, and B.J.M.T. Berkhout, The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS. 2014; 22(3): 596-606.
31.    Okoye, A.A. and L.J.J.I.R. Picker, CD 4+ T‐cell depletion in HIV infection: mechanisms of immunological failure. 2013; 254(1): 54-64.
32.    Février, M., K. Dorgham, and A.J.V. Rebollo, CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. 2011; 3(5): 586-612.
33.    Mogensen, T.H., et al., Innate immune recognition and activation during HIV infection. 2010; 7(1): 1-19.
34.    RT Kakade, S.F., PS Bafna, AK Tilva., Overview on Acquired immunodeficiency syndrome. Research J. Pharmacology and Pharmacodynamics, 2012; 4(3): 158-162
35.    Walker-Sperling, V.E., et al., The effect of latency reversal agents on primary CD8+ T cells: implications for shock and kill strategies for human immunodeficiency virus eradication. 2016; 8: 217-229.
36.    Gorantla, S., et al., CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. 2010; 184(12): 7082-7091.
37.    Cannon, P., C.J.C.O.I.H. June, and AIDS, CCR5 knockout strategies. 2011; 6(1): 74.
38.    Barton, K., et al., Prospects for treatment of latent HIV. 2013; 93(1): 46-56.
39.    Kostense, S., et al., Persistent numbers of tetramer+ CD8+ T cells, but loss of interferon-γ+ HIV-specific T cells during progression to AIDS. 2002: 99(7): 2505-2511.
40.    Crawford, T.Q., et al., HIV-1 infection abrogates CD8+ T cell mitogen-activated protein kinase signaling responses. 2011; 85(23): 12343-12350.
41.    Rezaei, S.D. and P.U.J.C.H.A.R. Cameron, Human immunodeficiency virus (HIV)-1 integration sites in viral latency. 2015; 12(1): 88-96.
42.    Jiang, G., S.J.A.R. Dandekar, and H. Retroviruses, Targeting NF-κB signaling with protein kinase C agonists as an emerging strategy for combating HIV latency. 2015: 31(1): 4-12.
43.    Chen, Y.-R., et al., The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and γ radiation duration of JNK activation may determine cell death and proliferation. 1996; 271(50): 31929-31936.
44.    Vinay Kumar G., N.P.N., Prasannakumar D.R., Parmesha, A Study to assess the Quality of life of People Living with HIV/AIDS receiving Anti Retroviral Therapy from the selected Anti-Retroviral Therapy centre’s of Mysore. Int. J. Adv. Nur. Management, 2014; 2(2): 90-92.

Recomonded Articles:

Author(s): Priya P. Munshi, D.S. Mohale, R. Akkalwar, A.V. Chandewar

DOI: Not Available         Access: Open Access Read More

Author(s): Manju Rawat, SJ Daharwal, Deependra Singh

DOI:         Access: Open Access Read More

Author(s): Moghal. Roohi Shabreen, S. Sangeetha

DOI: 10.5958/0974-360X.2020.00355.8         Access: Open Access Read More

Author(s): V. Swathi, G. Velrajan, Balasubramaniam

DOI: Not Available         Access: Open Access Read More

Author(s): Subashri. A, T. N. Uma Maheshwari

DOI: 10.5958/0974-360X.2016.00375.9         Access: Open Access Read More

Author(s): Bayu Eko Prasetyo, Karsono, Sakro Mega Maruhawa, Lia Laila

DOI: 10.5958/0974-360X.2018.00707.2         Access: Open Access Read More

Author(s): Suman Katteboina and VSR Chandrasekhar P

DOI: Not Available         Access: Open Access Read More

Author(s): Vasudev Pai, Chandrashekar K. S, C. S. Shreedhara, Aravinda Pai

DOI: 10.5958/0974-360X.2017.00628.X         Access: Open Access Read More

Author(s): J. Insira Sarbeen, Saravana Pandian

DOI: 10.5958/0974-360X.2016.00322.X         Access: Open Access Read More

Author(s): Monisha C, GNK. Ganesh, Mythili L, Kayalvizhi Radhakrishnan

DOI: 10.5958/0974-360X.2019.00529.8         Access: Open Access Read More

Author(s): Neveda Baskeran

DOI: Not Available         Access: Open Access Read More

Author(s): Abinaya Kannan, Suresh Venugopalan

DOI: 10.5958/0974-360X.2018.00393.1         Access: Open Access Read More

Author(s): Monisha N.

DOI: Not Available         Access: Open Access Read More

Author(s): Ram S Sakhare, Ashish B Roge, RL Bakal, MA Channawar, AV Chandewar

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags