Author(s): Riham Omar Bakr, Soumaya Saad Zaghloul, Reham Ibrahim Amer, Dalia Abd Elaty Mostafa, Mahitab Helmy El Bishbishy

Email(s): rehambkr@yahoo.com , romar@msa.eun.eg

DOI: 10.52711/0974-360X.2021.00633   

Address: Riham Omar Bakr1*, Soumaya Saad Zaghloul1, Reham Ibrahim Amer2,3, Dalia Abd Elaty Mostafa2, Mahitab Helmy El Bishbishy1
1Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt.
2Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787, Giza, Egypt.
3Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
*Corresponding Author

Published In:   Volume - 14,      Issue - 7,     Year - 2021


ABSTRACT:
Objective: Aegle marmelos (L.) Correa has been widely used in Indian traditional medicine and has many reported pharmacological activities. The aim of this research was to formulate solid lipid nanoparticles (SLNs) of Aegle oil (AO) that enhanced the beneficial antimicrobial activity of the oil. Methods: The chemical composition of Aegle leaf essential oil was analysed by GC-MS. Additionally, a phytochemical study of A. marmelos methanolic leaf extract was conducted using Folin-Ciocalteu colorimetric assay for determination of total phenolic content as well as ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-ESI-MS-MS) analyses for identification of individual components. Six formulations of AO-loaded SLNs (AO-SLNs) were prepared by a double emulsification method. The particle size, zeta potential (ZP), polydispersibility index (PDI) and drug encapsulation efficiency (EE) of the SLNs were determined. The morphology of the SLNs was observed by transmission electron microscopy (TEM). The antimicrobial activity of AO and AO-SLNs was assessed using disc diffusion method. Results: Thirty-two compounds were identified in the Aegle oil, of which ?-carene and a-phellandrene were the most abundant (48.14% and 34.14%, respectively). The estimated total phenolic content was 968mg gallic acid equivalents (GAE)/g, while UPLC-ESI-MS-MS led to the tentative characterization of thirteen metabolites. The SLNs showed ZP, PDI and EE 125 ± 0.22nm, –37.85, 0.282, and 92%, respectively. AO and AO-SLNs showed significant antimicrobial activity, and the SLNs could sustain the release of AO from their gel vehicles. Conclusion: Our results provide evidence for the application of AO-SLNs in topical and transdermal delivery systems.


Cite this article:
Riham Omar Bakr, Soumaya Saad Zaghloul, Reham Ibrahim Amer, Dalia Abd Elaty Mostafa, Mahitab Helmy El Bishbishy. Formulation, Characterization and Antimicrobial efficacy of Aegle marmelos Essential oil nanogel. Research Journal of Pharmacy and Technology. 2021; 14(7):3662-8. doi: 10.52711/0974-360X.2021.00633

Cite(Electronic):
Riham Omar Bakr, Soumaya Saad Zaghloul, Reham Ibrahim Amer, Dalia Abd Elaty Mostafa, Mahitab Helmy El Bishbishy. Formulation, Characterization and Antimicrobial efficacy of Aegle marmelos Essential oil nanogel. Research Journal of Pharmacy and Technology. 2021; 14(7):3662-8. doi: 10.52711/0974-360X.2021.00633   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-30


REFERENCES:
1.    Fallah Huseini H, Fakhrzadeh H, Larijani B, Shikh Samani A. Review of anti-diabetic medicinal plant used in traditional medicine. J Med Plants. 2006;1(17): 1-8.
2.    Pedro a S, Santo IE, Silva C V, Detoni C, Albuquerque E. Microbial pathogens and strategies for combating them: science, technology and education. In: Méndez-Vilas A, ed. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex; 2013: 1364-1374.
3.    Cavalli R, Caputo O, Gasco MR. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci. 2000;10: 305-309.
4.    Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther. 2011; 9: 1035-1052.
5.    Zhaveh S, Mohsenifar A, Beiki M, et al. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crops Prod. 2015;69: 251-256.
6.    Najafi-taher R, Ghaemi B, Kharrazi S, Rasoulikoohi S, Amani A. Promising antibacterial effects of silver nanoparticle-loaded tea tree oil nanoemulsion: a synergistic combination against resistance threat. AAPS Pharm SciTech. 2018;19(3): 1133-1140. doi:10.1208/s12249-018-0950-2
7.    Manandhar B, Paudel KR, Sharma B, Karki R. Phytochemical profile and pharmacological activity of Aegle marmelos Linn. J Integr Med. 2018; 16 (3): 153-163.
8.    Chakthong S, Weaaryee P, Puangphet P, et al. Alkaloid and coumarins from the green fruits of Aegle marmelos. Phytochemistry. 2012; 75: 108-113.
9.    Mishra BB, Kishore N, Tiwari VK, Singh DD, Tripathi V. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). Fitoterapia. 2010;81(2): 104-107. doi:10.1016/ j.fitote.2009.08.009
10.    Mishra BB, Singh DD, Kishore N, Tiwari VK, Tripathi V. Antifungal constituents isolated from the seeds of Aegle marmelos. Phytochemistry. 2010;71(2-3): 230-234. doi:10.1016/ j.phytochem.2009.10.013
11.    Sain S, Naoghare P, Devi S, et al. Beta Caryophyllene and Caryophyllene Oxide, Isolated from Aegle Marmelos, as the Potent Anti-inflammatory Agents against Lymphoma and Neuroblastoma Cells. Antiinflamm Antiallergy Agents Med Chem. 2014;13(1):45-55. doi:10.2174/18715230113129990016
12.    Ibrahim NA, El-Sakhawy FM, Mohammed MMD, Farid MA, Abdel-Wahed NAM, Deabes DAH. Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. J Appl Pharm Sci. 2015; 5(2): 1-5.
13.    Jamal MAHM, Rahman MS, Hossain MB, et al. Antibacterial properties and chemical composition of essential oil from Aegle marmelos (L.) Corr. leaves growing in Bangladesh. J Essent Oil-Bearing Plants. 2017;20(1): 155-174. doi:10.1080/0972060X.2017.1308276
14.    Gandhi GR, Ignacimuthu S, Paulraj MG. Hypoglycemic and β-cells regenerative effects of Aegle marmelos (L.) Corr. bark extract in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2012;50(5): 1667-1674.
15.    Karmase A, Birari R, Bhutani KK. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine. 2013;20(10): 805-812.
16.    Pynam H, Dharmesh SM. Antioxidant and anti-inflammatory properties of marmelosin from Bael (Aegle marmelos L.); Inhibition of TNF-α mediated inflammatory/tumor markers. Biomed Pharmacother. 2018; 106:98-108.
17.    Rathee D, Kamboj A, Sachdev RK, Sidhu S. Hepatoprotective effect of Aegle marmelos augmented with piperine co-administration in paracetamol model. Brazilian J Pharmacogn. 2018; 28: 65-72.
18.    Modi H, Patel V, Patel K. Hepatoprotective activity of Aegle marrmelos against ethanol induced hepatotoxicity in rats. Asian J Pharm Clin Res. 2012;5: 164-167.
19.    Mohammed MMD, Ibrahim NA, El-Sakhawy FS, Mohamed KM, Deabes DA-H. Two new cytotoxic furoquinoline alkaloids isolated from Aegle marmelos (Linn.) Correa. Nat Prod Res. 2016;30(22): 2559-2566.
20.    Shahat EA, Bakr RO, Eldahshan OA, Ayoub NA. Chemical Composition and Biological Activities of the Essential Oil from Leaves and Flowers of Pulicaria incisa sub. candolleana (Family Asteraceae). Chem Biodivers. 2017; 14(4): e1600156
21.    Adams RP. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. Allured Pub. Corp; 2007.
22.    Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002;50(8): 2432-2438.
23.    Trotta M, Cavalli R, Carlotti ME, Battaglia L, Debernardi F. Solid lipid micro-particles carrying insulin formed by solvent-in-water emulsion-diffusion technique. Int J Pharm. 2005;288: 281-288.
24.    Shekhawat PB. Preparation and evaluation of Clotrimazole nanostructured lipid carrier for topical delivery. Int J Pharma Bio Sci. 2012;4(1): 407-416.
25.    Yener G, Incegül T, Yener N. Importance of using solid lipid microspheres as carriers for UV filters on the example octyl methoxy cinnamate. Int J Pharm. 2003;258: 203-207.
26.    Praveen S, Gowda D V., Srivastava A, Osmani RAM. Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride. Der Pharm Lett. 2016;8(7): 251-256.
27.    Vishwakarma GS, Gautam N, Babu JN, Mittal S, Jaitak V. Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms. Polym Rev. 2016;56(4): 668-701.
28.    Wissing SA, Muller RH. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release. 2002;81: 225-233.
29.    Mohamed MI. Optimization of chlorphenesin emulgel formulation. AAPS J. 2004;6(3): 1-7.
30.    Mickymaray S, Al Aboody MS, Rath PK, Annamalai P, Nooruddin T. Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pac J Trop Biomed. 2016; 6(3): 185-191.
31.    Saini KR, Choudhary SA, Joshi YC, Joshi P. Solvent free synthesis of chalcones and their antibacterial activities. E-Journal Chem. 2005;2(4):224-227. doi:10.1155/2005/294094
32.    Zhang J hong, Sun H long, Chen S yang, Zeng LI, Wang T tao. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot Stud. 2017; 58:13.
33.    Da Silva ACR, Lopes PM, De Azevedo MMB, Costa DCM, Alviano CS, Alviano DS. Biological activities of α-pinene and β-pinene enantiomers. Molecules. 2012;17(6): 6305–6316.
34.    Ibrahim NA, Mohammed MMD, Aly HF, Ali SA, Al-Hady D-A. Efficiency of the leaves and fruits of Aegle marmelos methanol extract (L.) Correa and their relative hepatotoxicity induced by CCL4 and identification of their active constituents by using LC/MS/MS. Toxicol Reports. 2018; 5: 1161–1168.
35.    Nugroho AE, Riyanto S, Sukari MA, Maeyama K. Effects of aegeline, a main alkaloid of Aegle marmelos correa leaves, on the histamine release from mast cells. Pak J Pharm Sci. 2011; 24(3): 359-367.
36.    Manandhar MD, Shoeb A, Kapil RS, Popli SP. New alkaloids from Aegle marmelos. Phytochemistry. 1978;17(10): 1814-1815.
37.    Phuwapraisirisan P, Puksasook T, Jong-aramruang J, Kokpol U. Phenylethyl cinnamides: A new series of α-glucosidase inhibitors from the leaves of Aegle marmelos. Bioorganic Med Chem Lett. 2008;18(18): 4956-4958.
38.    Shinde PB, Laddha KS. Simultaneous quantification of furanocoumarins from Aegle marmelos fruit pulp extract. J Chromatogr Sci. 2015; 53(4): 576-579.
39.    P. Santhana Krishnan V, Karthikeyan G, Janaki P, Poonkodi B, Sathya R. Isolation of Heraclenin from Aegle marmelos correa and screening for its antimicrobial activity through in vitro & in silico studies. Nat Prod J. 2016;6(2): 134-141.
40.    Ali MS, Pervez MK. Marmenol: A 7-geranyloxycoumarin from the leaves of Aegle marmelos corr. Nat Prod Res. 2004; 18(2): 141-146.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available