Author(s): Yustinus Maladan, Hana Krismawati, Tri Wahyuni, Hotma Martogi Lorensi Hutapea, Muhammad Fajri Rokhmad, Arli Aditya Parikesit

Email(s): yustinus.maladan@litbang.kemkes.go.id , arli.parikesit@i3l.ac.id

DOI: 10.52711/0974-360X.2021.00619   

Address: Yustinus Maladan1*, Hana Krismawati1, Tri Wahyuni1, Hotma Martogi Lorensi Hutapea1, Muhammad Fajri Rokhmad1, Arli Aditya Parikesit2*
1Center for Papua Health Research and Development, Jl. Kesehatan No. 48, Jayapura 99111, Papua, Indonesia.
2Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav.88 Jakarta 13210. Indonesia.
*Corresponding Author

Published In:   Volume - 14,      Issue - 7,     Year - 2021


ABSTRACT:
Leprosy persists to be a health problem in Indonesia, especially in the provinces of North Maluku, West Papua and Papua. Early diagnosis and complete treatment with multidrug therapy (MDT) remain the key strategy for reducing the disease burden. One of the major components of MDT is rifampicin which in certain cases in several countries, M. leprae resistance to this drug issue has been reported albeit only a few. This research aimed to detect and analyze polymorphism in M. leprae rpoB gene that was isolated from leprosy patients in three provinces: North Maluku Province, West Papua Province and Papua Province, Indonesia. The identification of mutations in the M. leprae rpoB gene was carried out by aligning the results of DNA sequencing with the reference strain. The 3D structure of rpoB was derived using the Swiss Model. The T450A, S456L, and H451Y variants of RNA Polymerase B subunits were constructed using FoldX based on the wild-type structure. The structures were repaired, and protein stability was evaluated using foldX under the Yasara viewer. The QC of the rpoB M. leprae homology models was conducted with Ramachandran Plot modeling using PROCHECK. The difference in binding affinity between native protein and T450A, S456L, and H45I variants were analyzed using molecular docking. rpoB gene of M. leprae contains a mutation found in nucleotide of 1348 bp. The mutation triggered the conversion of the amino acid Threonine to Alanine in the amino acid to 450 rpoB subunit B. The structure of 3D RNA Polymerase Subunit B was constructed using rpoB Mycobacterium tuberculosis with PDB code 5UH5 as template. According to Ramachandran Plot, the percentage of residues in the most favored regions are 91.9%, and there was no significant number of residues in the disallowed regions. The results of molecular docking showed that the T450A variant had the same binding affinity with the native protein which was -8.9 kcal. Binding affinity on the S456L and H451Y variants increased by -7.3 kcal and -8.2 kcal, respectively. According to Molecular Docking analysis, T450A variant did not affect the energy binding between RNA polymerase and rifampicin.


Cite this article:
Yustinus Maladan, Hana Krismawati, Tri Wahyuni, Hotma Martogi Lorensi Hutapea, Muhammad Fajri Rokhmad, Arli Aditya Parikesit. Molecular Docking Analysis of the T450A Mutation of the Gene rpoB Mycobacterium leprae from Leprosy Patients in Papua, West Papua and North Maluku, Indonesia. Research Journal of Pharmacy and Technology. 2021; 14(7):3578-4. doi: 10.52711/0974-360X.2021.00619

Cite(Electronic):
Yustinus Maladan, Hana Krismawati, Tri Wahyuni, Hotma Martogi Lorensi Hutapea, Muhammad Fajri Rokhmad, Arli Aditya Parikesit. Molecular Docking Analysis of the T450A Mutation of the Gene rpoB Mycobacterium leprae from Leprosy Patients in Papua, West Papua and North Maluku, Indonesia. Research Journal of Pharmacy and Technology. 2021; 14(7):3578-4. doi: 10.52711/0974-360X.2021.00619   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-7-16


REFERENCES:
1.    WHO. Guidelines for the diagnosis, treatment and prevention of leprosy. New Delhi. 2018.
2.    Kemenkes RI. Hapuskan Stigma Dan diskriminasi Terhadap Kusta. Ministry of Health Indonesia, Jakarta. 2018.
3.    Kemenkes. Profil Kesehatan Indonesia. Ministry of Health Indonesia, Jakarta. 2018.
4.    Singh A. Occurrence of deformity in different grades of leprosy patients in Uttar Pradesh, India. Res J Pharmacol Pharmacodynamic. 2019; 11(3): 92.
5.    Honore N, Cole ST. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993; 37(3): 414–8.
6.    Khawas S, et al. Simultaneous spectrophotometric estimation of rifampicin, isoniazid and pyrazinamide in their pharmaceutical dosage form. Asian J Res Chem. 2020; 13(2): 117.
7.    Sri Lakshmi D, Jacob JT. Validated degradation studies for the estimation of pyrazinamide, ethambutol, isoniazid and rifampacin in a fixed dose combination by UPLC. Res J Pharm Technol. 2018; 11(7): 2869–75.
8.    Bharti U, et al. Bee pollen attenuates rifampicin and isoniazid in combination induced oxidative stress in testis of SD rats. Res J Pharm Technol. 2018; 11(3): 1159–63.
9.    Avachat A, Bhise SB. Development and characterization of a stable suspension of rifampicin and isoniazid. Res J Pharma Dos Forms Tech. 2009; 1(3): 213–6.
10.    Saranya, et al. Factors influencing rifampicin autoinduction in adult pulmonary tuberculosis patients. Res J Pharm Technol. 2016; 9(8): 1223–8.
11.    Gindi S, et al. Role of Ficus bengalensis leaves as a hepatoprotective on rifampicin induced hepatic damage in albino rats. Res J Pharmacol Pharmacodynamic. 2010; 2(6): 378–9.
12.    Cambau E, et al. Antimicrobial resistance in leprosy: results of the first prospective open survey conducted by a WHO surveillance network for the period 2009–15. Clin Microbiol Infect. 2018; 24(12): 1305–10.
13.    Bhise S, Mookan S. Poor bioavailability of rifampicin- a global emergency. Res J Pharm Tech. 2008; 1(3): 155–60.
14.    WHO. A guide for surveillance of antimicrobial resistance in leprosy. New Delhi. 2017.
15.    Kai M, et al. Analysis of drug-resistant strains of Mycobacterium leprae in an endemic area of Vietnam. Clin Infect Dis. 2011; 52(5): 127–32.
16.    Barker LP. Mycobacterium leprae interactions with the host cell: recent advances. Indian J Med Res. 2006; 123: 748–59.
17.    Williams DL, Gillis TP. Drug-resistant leprosy: monitoring and current status. Lepr Rev. 2012; 83: 269–81.
18.    Floss HG, Yu T. Rifamycin mode of action, resistance, and biosynthesis. Chem Rev. 2005; 105: 621–32.
19.    Telenti A, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993; 341: 647–50.
20.    Nisha J, Shanthi V. Computational simulation techniques to understand rifampicin resistance mutation (S425L) of rpoB in M. leprae. J Cell Biochem. 2015; 116(7): 1278–85.
21.    Horng Y, et al. Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin. Am Soc Microbiol. 2015; 59(3): 1542–8.
22.    Vedithi SC, et al. A report of rifampin-resistant leprosy from northern and eastern India: identification and in silico analysis of molecular interactions. Med Microbiol Immunol. 2015; 204: 193-203
23.    Vedithi SC, et al. Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae. Comput Struct Biotechnol J. 2020; 18: 271–86.
24.    Lungidningtyas A, Parikesit AA. In silico analysis of ethanol binding activity in neuronal nicotinic acetylcholine receptors. Malaysian J Appl Sci. 2020; 5(1): 54–61.
25.    Sharanya M, et al. An in-silico determination of drug-like molecules from plant source to treat leprosy- a neglected tropical infectious disease of India. Res J Pharm Technol. 2017; 10(10): 3361–4.
26.    Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: An online force field. Nucleic Acids Res. 2005;33: W382–8.
27.    Parikesit AA, et al. In silico analysis of envelope Dengue Virus-2 and Envelope Dengue Virus-3 protein as the backbone of Dengue Virus Tetravalent Vaccine by using homology modeling method. Online J Biol Sci. 2009; 9(1): 6–16.
28.    Trott O, Olson A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010; 31(2): 455–61.
29.    Ditjen PP&PL Kemenkes RI. Pedoman nasional program pengendalian penyakit kusta. Jakarta: Ministry of Health Indonesia. 2014.
30.    Baohong J. Drug susceptibility testing of Mycobacterium leprae. Int J Lepr. 1987; 55(4): 830–5.
31.    Tanod VP, et al. Development of an assay system for genotyping Mycobacterium leprae resistant to dapsone, rifampicin, and ofloxacin. Indian J Lepr. 2019; 91: 185–95.
32.    Portelli S, et al. Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Sci Rep. 2018; 8(1): 1–12.
33.    Li W, et al. Real-Time PCR and high-resolution melt analysis for rapid detection of Mycobacterium leprae drug resistance mutations and strain types. J Clin Microbiol. 2012; 742–53.
34.    Araujo S, et al. qPCR-High resolution melt analysis for drug susceptibility testing of Mycobacterium leprae directly from clinical specimens of leprosy patients. PLoS Negl Trop Dis. 2017; 1–18.
35.    Wehrli W, Staehelin M. Actions of the rifamycins. Bacteriol Rev. 1971; 35(3): 290–309.
36.    Biasini M, et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014; 42: 252–8.
37.    Rodrigues CHM, et al. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018;46 (W1): W350–5.
38.    Lin W, et al. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol Cell. 2017; 66(2): 169-179.e8.
39.    Maeda S, et al. Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother. 2001; 45(12): 3635–9.
40.    Williams DL, Gillis TP. Molecular detection of drug resistance in Mycobacterium leprae. Lepr Rev. 2004; 75: 118–30.
41.    Venkataramana NV, et al. Development and validation of a chromatographic method for the estimation of rifampicin in bulk and pharmaceutical formulations. Res J Pharm Technol. 2016; 9(12): 2191.
42.    Vamshi Krishna T, Reddy S. Formulation and evaluation of fixed dose combination tablets of rifampicin and isoniazid with improved rifampicin stability. Res J Pharm Technol. 2013; 6(12): 1468–71.
43.    Vamshi KT, M SR. Isocratic high performance liquid chromatographic (HPLC) determination of rifampicin in presence of isoniazid. Res J Pharm Tech. 2014; 7(3): 328–31.
44.    Dhamane SP, Jagdale SC. Development of rifampicin loaded Chitosan nanoparticles by 32 full factorial design. Res J Pharm Technol. 2020; 13(6): 2545–50.
45.    Misal RS, et al. Review on: new approaches in self micro-emulsifying drug delivery system. Res J Pharm Technol. 2017; 10(4): 1215.
46.    Desai J, et al. Alginate-based microparticulate oral drug delivery system for rifampicin. Res J Pharm Tech. 2009; 2(2): 301–3.
47.    Sundar RD, et al. Potential medicinal plants to treat leprosy-a review. Research Journal of Pharmacy and Technology. 2018; 11: 813–21.
48.    Nitin M, et al. Protective effect of aqueous extracts of Sacharum officinarum leaves against rifampicin-induced hepatotoxicity in rats. Res J Pharm Tech. 2013; 6(8): 885–8.

Recomonded Articles:

Author(s): Shrivastava Alankar, Jain R., Agrawal R.K., Ahirwar D.

DOI:         Access: Open Access Read More

Author(s): R. P. Bhole, S. R. Jagtap, K. B. Chadar, Y. B. Zambare

DOI: 10.5958/0974-360X.2020.00189.4         Access: Open Access Read More

Author(s): Ranjitha Dhevi V. Sundar, Sugashini Settu, Saranya Shankar, Gayathri Segaran, Mythili Sathiavelu

DOI: 10.5958/0974-360X.2018.00153.1         Access: Open Access Read More

Author(s): Abhirup Dey, Mangala Lakshmi Ragavan, Sanjeeb Kumar Mandal, Nilanjana Das

DOI: 10.5958/0974-360X.2017.00136.6         Access: Open Access Read More

Author(s): Dhanalekshmi UnniKrishnan Nair, MP Saraswathy, Narra Kishore, Neelakanta Reddy Pully

DOI: Not Available         Access: Open Access Read More

Author(s): Vandana Gautam, Dhriti Kapoor, Saroj Arora, Renu Bhardwaj*

DOI: 10.5958/0974-360X.2016.00166.9         Access: Open Access Read More

Author(s): A. Julius, Ramachandran Vedasendiyar, Archana Devakannan, Sujatha Rajaraman, Balamurugan Rangasamy, V. Saravanan

DOI: 10.5958/0974-360X.2017.00062.2         Access: Open Access Read More

Author(s): T. Arunkumar, Ann Feba Ebby, G. Narendrakumar

DOI: 10.5958/0974-360X.2017.00441.3         Access: Open Access Read More

Author(s): Manisha N. Trivedi, Archana Khemani, Urmila D. Vachhani, Charmi P. Shah, D.D. Santani

DOI: Not Available         Access: Open Access Read More

Author(s): Krishnendu Acharya*, Somanjana Khatua, Salman Sahid

DOI: Not Available         Access: Open Access Read More

Author(s): Lovely Joylen Castelino, Anoop Narayanan V, Swapnil Dylan Fernandes, Pankaj Kumar, Sandeep D S

DOI: 10.5958/0974-360X.2018.00590.5         Access: Open Access Read More

Author(s): Md Kamal Hossain, Kamrun Nahar, Parisa Shokryazdan, Norhani Abdullah, Kaiser Hamid, Mohammed Faseleh Jahromi

DOI: 10.5958/0974-360X.2017.00530.3         Access: Open Access Read More

Author(s): Saranya, Parthasarathy V, Hariprasad B, Shobha Rani H

DOI: 10.5958/0974-360X.2016.00233.X         Access: Open Access Read More

Author(s): Aravind R., Bindu A.R., Bindu K., Alexeyena V.

DOI: Not Available         Access: Open Access Read More

Author(s): Mithilesh Kumar, Anshu Deogam, Mradul Tiwari, Venkatesh Kamath

DOI: 10.5958/0974-360X.2017.00305.5         Access: Open Access Read More

Author(s): R. Pandian , Lalitha Kumari

DOI: 10.5958/0974-360X.2016.00471.6         Access: Open Access Read More

Author(s): Ujwala R. Bagmar, Dinesh C. Sancheti, Sarika R. Zade, Varsha K. Pawar, Nanda R. Badhe

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags