Author(s): Ahmed R. Gardouh, Ahmed S. G. Srag El-Din, Yasser Mostafa, Shadeed Gad

Email(s): ,

DOI: 10.52711/0974-360X.2021.00614   

Address: Ahmed R. Gardouh1,2, Ahmed S. G. Srag El-Din3*, Yasser Mostafa4, Shadeed Gad1
1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid 221110, Jordan.
3Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Egypt.
4Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
*Corresponding Author

Published In:   Volume - 14,      Issue - 7,     Year - 2021

The current work aimed at adopting in situ combination of sono-precipitation and alkali hydrolysis as a rapid technique for starch nanoparticles (SNPs) preparation under ambient conditions with a high yield. Factors affecting the preparation of SNPs were investigated based on statistical analysis using the Box Behnken design. The particle size and polydispersity index of particles were used as dependent variables to obtain the optimized formulation. The SNPs optimized formulation (F14) was further characterized for zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction. The results of particle size were between 44.82±3.31 and 83.93±8.53 while polydispersity index results were ranged from 0.106±0.012 to 0.179±0.018. The results obtained revealed the efficiency of the technique in obtaining a high yield (98.72% ±0.89) of well-distributed nanoparticles. Also, the SNPs obtained were spherical in shape with good stability, as indicated by zeta analysis (-20±0.25mV) and thermal analysis. The data obtained also showed no change in the chemical structure of the SNPs, as indicated by the infrared transmission of Fourier, thermal analysis, and the relative crystallinity of SNPs was decreased compared with native maize starch indicating the crystallite is transformed from crystalline to amorphous form. The obtained results concluded the efficiency of the adopted method on obtaining SNPs in a short preparation time with a high yield under ambient conditions.

Cite this article:
Ahmed R. Gardouh, Ahmed S. G. Srag El-Din, Yasser Mostafa, Shadeed Gad. Starch Nanoparticles Preparation and Characterization by in situ combination of Sono-precipitation and Alkali hydrolysis under Ambient Temperature. Research Journal of Pharmacy and Technology. 2021; 14(7):3543-2. doi: 10.52711/0974-360X.2021.00614

Ahmed R. Gardouh, Ahmed S. G. Srag El-Din, Yasser Mostafa, Shadeed Gad. Starch Nanoparticles Preparation and Characterization by in situ combination of Sono-precipitation and Alkali hydrolysis under Ambient Temperature. Research Journal of Pharmacy and Technology. 2021; 14(7):3543-2. doi: 10.52711/0974-360X.2021.00614   Available on:

1.    Wang, H.; Feng, T.; Zhuang, H.; Xu, Z.; Ye, R.; Sun, M., A Review on Patents of Starch Nanoparticles: Preparation, Applications, and Development. Recent Patents on Food, Nutrition and Agriculture 2018; 9: 23-30.
2.    Rani, N. S.; Krishna, M. T.; Saikishore, V., Design and Development of Sweet Potato Starch Blended Sodium Alginate Mucoadhesive Microcapsules of Glipizide. Research Journal of Pharmaceutical Dosage Forms and Technology 2011; 3: 12-16.
3.    Rajan, S.; Babu, S.; Ali, N. B.; Meka, V. S.; Kumar, B. A., Pharmaceutical Excipient Behaviour of Chickpea (Cicer arietinum) Starch in Losartan Potassium Fast Disintegrating Tablet. Research Journal of Pharmacy and Technology 2019; 12: 637-643.
4.    Gaikwad, B. G.; Kolapkar, V. V.; Shrouti, M., Ethanol Production from Starch by Hydrolysis and Fermentation. Research Journal of Science and Technology 2015; 7: 14-18.
5.    Kothekar, S.; Shukla, S.; Suneetha, V., A Brief Study on Starch Based Bio-Plastics Produced from Staple Food Items. Research Journal of Pharmacy and Technology 2018; 11: 4878-4883.
6.    Jeevahan, J.; Chandrasekaran, M., Effect of Olive oil Concentrations on film properties of edible composite films prepared from Corn starch and Olive oil. Research Journal of Pharmacy and Technology 2018; 11: 4934-4938.
7.    Krishnakumar, S.; Judi, A. A.; Keerthana, G.; Devi, N.; Divya, R., Starch mediated production of silver nanoparticles (Ag-NPs) and their antimicrobial activity against selected pathogens. Research Journal of Pharmacy and Technology 2016; 9: 440-444.
8.    Sun, Q., Chapter 18 - Starch Nanoparticles. In Starch in Food (Second Edition), Sjöö, M.; Nilsson, L., Eds. Woodhead Publishing: 2018; pp 691-745.
9.    OdeniyiA, M. A.; OmotesoB, O. A.; AdepojuB, A. O.; JaiyeobaE, K. T., Starch nanoparticles in drug delivery: A review. Polim Med 2018; 48: 41-45.
10.    Kaur, J.; Kaur, G.; Sharma, S.; Jeet, K., Cereal starch nanoparticles-A prospective food additive: A review. Critical reviews in food science and nutrition 2018; 58: 1097-1107.
11.    Santander-Ortega, M.; Stauner, T.; Loretz, B.; Ortega-Vinuesa, J. L.; Bastos-González, D.; Wenz, G.; Schaefer, U. F.; Lehr, C.-M., Nanoparticles made from novel starch derivatives for transdermal drug delivery. Journal of Controlled Release 2010; 141: 85-92.
12.    Apostolidis, E.; Mandala, I., Modification of resistant starch nanoparticles using high-pressure homogenization treatment. Food Hydrocolloids 2020; 105677.
13.    Guo, Z.; Zhao, B.; Chen, L.; Zheng, B., Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization. Nutrients 2019; 11: 371.
14.    Shi, A.-m.; Li, D.; Wang, L.-j.; Li, B.-z.; Adhikari, B., Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers 2011; 83: 1604-1610.
15.    Abral, H.; Basri, A.; Muhammad, F.; Fernando, Y.; Hafizulhaq, F.; Mahardika, M.; Sugiarti, E.; Sapuan, M.; Ilyas, R.; Stephane, I., A simple method for improving the properties of the sago starch films prepared by using ultrasonication treatment. Food Hydrocolloids 2019.
16.    Hasanvand, E.; Fathi, M.; Bassiri, A., Production and characterization of vitamin D 3 loaded starch nanoparticles: effect of amylose to amylopectin ratio and sonication parameters. Journal of food science and technology 2018; 55: 1314-1324.
17.    Bel Haaj, S.; Magnin, A.; Pétrier, C.; Boufi, S., Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers 2013; 92: 1625-1632.
18.    Song, D.; Thio, Y. S.; Deng, Y., Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydrate polymers 2011; 85: 208-214.
19.    Lamanna, M.; Morales, N. J.; García, N. L.; Goyanes, S., Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. Carbohydrate polymers 2013; 97: 90-97.
20.    Alzate, P.; Gerschenson, L.; Flores, S., Micro/nanoparticles containing potassium sorbate obtained by the dialysis technique: Effect of starch concentration and starch ester type on the particle properties. Food Hydrocolloids 2019; 95: 540-550.
21.    Zhou, L.; Fang, D.; Wang, M.; Li, M.; Li, Y.; Ji, N.; Dai, L.; Lu, H.; Xiong, L.; Sun, Q., Preparation and characterization of waxy maize starch nanocrystals with a high yield via dry-heated oxalic acid hydrolysis. Food Chemistry 2020; 126479.
22.    Velásquez-Castillo, L. E.; Leite, M. A.; Ditchfield, C.; do Amaral Sobral, P. J.; Moraes, I. C. F., Quinoa starch nanocrystals production by acid hydrolysis: Kinetics and properties. International Journal of Biological Macromolecules 2020; 143: 93-101.
23.    Winarti, C.; Surono, I.; Uswah, M. In Effect of Acid and Hydrolysis Duration on The Characteristics of Arrowroot and Taro Starch Nanoparticles, IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2019; p 012039.
24.    Liu, Y.; Yang, G.; Zou, D.; Hui, Y.; Nigam, K.; Middelberg, A. P. J.; Zhao, C.-X., Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Industrial and Engineering Chemistry Research 2019.
25.    Farrag, Y.; Ide, W.; Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R., Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules 2018; 114: 426-433.
26.    Wu, X.; Chang, Y.; Fu, Y.; Ren, L.; Tong, J.; Zhou, J., Effects of non‐solvent and starch solution on formation of starch nanoparticles by nanoprecipitation. Starch‐Stärke 2016; 68: 258-263.
27.    Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q., Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products 2016; 87: 182-190.
28.    Juna, S.; Hayden, S.; Damm, M.; Kappe, C. O.; Huber, A., Microwave mediated preparation of nanoparticles from wx corn starch employing nanoprecipitation. Starch‐Stärke 2014; 66: 316-325.
29.    Chin, S. F.; Pang, S. C.; Tay, S. H., Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers 2011; 86: 1817-1819.
30.    Tan, Y.; Xu, K.; Li, L.; Liu, C.; Song, C.; Wang, P., Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS applied materials and interfaces 2009; 1: 956-959.
31.    Hebeish, A.; El-Rafie, M.; El-Sheikh, M.; El-Naggar, M. E., Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant. Journal of Inorganic and Organometallic Polymers and Materials 2014; 24: 515-524.
32.    Alcázar-Alay, S. C.; Meireles, M. A. A., Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology 2015; 35: 215-236.
33.    Andrade, I. H.; Otoni, C. G.; Amorim, T. S.; Camilloto, G. P.; Cruz, R. S., Ultrasound-assisted extraction of starch nanoparticles from breadfruit (Artocarpus altilis (Parkinson) Fosberg). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020; 586: 124277.
34.    Kim, H.-Y.; Han, J.-A.; Kweon, D.-K.; Park, J.-D.; Lim, S.-T., Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydrate Polymers 2013; 93: 582-588.
35.    Shabana, S.; Prasansha, R.; Kalinina, I.; Potoroko, I.; Bagale, U.; Shirish, S., Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrasonics Sonochemistry 2019; 51: 444-450.
36.    Izidoro, D. R.; Sierakowski, M.-R.; Haminiuk, C. W. I.; De Souza, C. F.; de Paula Scheer, A., Physical and chemical properties of ultrasonically, spray-dried green banana (Musa cavendish) starch. Journal of Food Engineering 2011; 104: 639-648.
37.    Zhu, J.; Li, L.; Chen, L.; Li, X., Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloids 2012; 29: 116-122.
38.    Zuo, Y. Y. J.; Hébraud, P.; Hemar, Y.; Ashokkumar, M., Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrasonics Sonochemistry 2012; 19: 421-426.
39.    Minakawa, A. F. K.; Faria-Tischer, P. C. S.; Mali, S., Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chemistry 2019; 283: 11-18.
40.    Boufi, S.; Haaj, S. B.; Magnin, A.; Pignon, F.; Impéror-Clerc, M.; Mortha, G., Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry 2018; 41: 327-336.
41.    Chang, Y.; Yan, X.; Wang, Q.; Ren, L.; Tong, J.; Zhou, J., High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. Food Chemistry 2017; 227: 369-375.
42.    El-Sheikh, M. A., New technique in starch nanoparticles synthesis. Carbohydrate Polymers 2017; 176: 214-219.
43.    Kim, H.-Y.; Park, S. S.; Lim, S.-T., Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces 2015; 126: 607-620.
44.    Kong, X., Starches Modified by Nonconventional Techniques and Food Applications. In Starches for Food Application, Elsevier: 2019; pp 271-295.
45.    Chin, S. F.; Yazid, M.; Akmar, S. N.; Pang, S. C., Preparation and characterization of starch nanoparticles for controlled release of curcumin. International Journal of Polymer Science 2014, 2014.
46.    Saraf, A.; Dubey, N.; Dubey, N.; Sharma, M., Box Behnken Design Based Development of Curcumin Loaded Eudragit S100 Nanoparticles for Site-Spcific Delivery in Colon Cancer. Research Journal of Pharmacy and Technology 2019; 12: 3672-3678.
47.    Dholakia, M. S.; Rana, H. B.; Desai, S.; Gohel, M. C.; Patel, K. G.; Thakkar, V. T.; Gandhi, T. R., Development and Evaluation of Robust RP-HPLC Method for Gliclazide Estimation Integrating Box Behnken Design. Research Journal of Pharmacy and Technology 2019; 12: 135-141.
48.    Mittal, A.; Parmar, S.; Gilani, S. J.; Imam, S. S.; Taleuzzaman, M., Optimization and Validation for Simultaneous Estimation of Citicoline and Piracetam in bulk and tablet formulations using RP-HPLC method: Analytical quality by design approach. Asian Journal of Research in Chemistry 2017; 10: 198-205.
49.    El-Menshawe, S. F.; Ali, A. A.; Halawa, A. A.; El-Din, A. S. S., A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: in-vitro and in-vivo characterization. Drug Design, Development and Therapy 2017; 11: 3377-3388.
50.    Lathiyare, K. B.; Jain, V., Development and characterization of karanj oil based proniosomal gel for topical delivery. Research Journal of Pharmacy and Technology 2014; 7: 959-962.
51.    Somasundaram, I.; Yadav, B.; Kumar, S. S., Formulation of PLGA Polymeric Nanosuspension containing Pramipexole Dihydrochloride for improved treatment of Parkinson's Diseases. Research Journal of Pharmacy and Technology 2016; 9: 810-816.
52.    Elkomy, M. H.; El-Menshawe, S. F.; Ali, A. A.; Halawa, A. A.; El-Din, A. S. S., Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker. Drug Delivery and Translational Research 2017; 1-13.
53.    Roberts, S. A.; Cameron, R. E., The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinisation. Carbohydrate Polymers 2002; 50: 133-143.
54.    Krishnakumar, T.; Sajeev, M., Effect of Ultrasound Treatment on Physicochemical and Functional Properties of Cassava Starch. Int. J. Curr. Microbiol. App. Sci 2018; 7: 3122-3135.
55.    Singh, J.; Kaur, L.; McCarthy, O., Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food hydrocolloids 2007; 21: 1-22.
56.    Ahad, A.; Aqil, M.; Kohli, K.; Sultana, Y.; Mujeeb, M., Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment. International Journal of Pharmaceutics 2013; 443: 26-38.
57.    Riquelme, N.; Zúñiga, R. N.; Arancibia, C., Physical stability of nanoemulsions with emulsifier mixtures: Replacement of tween 80 with quillaja saponin. LWT 2019; 111: 760-766.
58.    Honary, S.; Zahir, F., Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical Journal of Pharmaceutical Research 2013; 12: 265-273.
59.    Najafi, S. H. M.; Baghaie, M.; Ashori, A., Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. International Journal of Biological Macromolecules 2016; 87: 48-54.
60.    Cumberland, S. A.; Lead, J. R., Particle size distributions of silver nanoparticles at environmentally relevant conditions. Journal of Chromatography A 2009; 1216: 9099-9105.
61.    Chang, R.; Tian, Y.; Yu, Z.; Sun, C.; Jin, Z., Preparation and characterization of zwitterionic functionalized starch nanoparticles. International Journal of Biological Macromolecules 2020; 142; 395-403.
62.    Souza, T. G.; Ciminelli, V. S.; Mohallem, N. D. S. In A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles, Journal of Physics: Conference Series, IOP Publishing: 2016; p 012039.
63.    Lammers, K.; Arbuckle-Keil, G.; Dighton, J., FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biology and Biochemistry 2009; 41: 340-347.
64.    Pongsawatmanit, R.; Chantaro, P.; Nishinari, K., Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. Journal of Food Engineering 2013; 117: 333-341.
65.    Yoshimura, M.; Takaya, T.; Nishinari, K., Effects of konjac-glucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry. Journal of Agricultural and Food Chemistry 1996; 44: 2970-2976.
66.    Yoshimura, M.; Takaya, T.; Nishinari, K., Effects of xyloglucan on the gelatinization and retrogradation of corn starch as studied by rheology and differential scanning calorimetry. Food Hydrocolloids 1999; 13: 101-111.
67.    Chung, H.-J.; Liu, Q., Impact of molecular structure of amylopectin and amylose on amylose chain association during cooling. Carbohydrate Polymers 2009; 77: 807-815.
68.    Ragab, H.; El-Kader, M. A., Optical and thermal studies of starch/methylcellulose blends. Physica Scripta 2013; 87: 025602.
69.    Mudasir, A.; Adil, G.; Ifra, H.; Huang, Q.; Hassan, S., Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports (Nature Publisher Group) 2020; 10.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles