Author(s): Harmeet Kaur, Arvinder Kaur, Pankaj Kumar Prashar, Anamika Gautam, Ankita Sood, Sachin Kumar Singh, Monica Gulati, Narendra Kumar Pandey, Bimlesh Kumar

Email(s): ,

DOI: 10.52711/0974-360X.2021.00603   

Address: Harmeet Kaur, Arvinder Kaur, Pankaj Kumar Prashar, Anamika Gautam, Ankita Sood, Sachin Kumar Singh, Monica Gulati, Narendra Kumar Pandey, Bimlesh Kumar*
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 6,     Year - 2021

Diabetes is a complex metabolic disorder. At chronic condition it causes severe damage to the multiple organs like heart, eyes, blood vessels, kidneys, and nerves which further brings about macrovascular and microvascular complications. In present situation sufficient drugs are available for the treatment of diabetes but risk and rate of mortality of a patient suffering from diabetes is very high. Reported partial relief and regular suffering of patient is a leading challenge of medical as well as health care professionals. Available drugs given in the form of monotherapy restricted to certain conditions only and it is not able to provide inadequate relief. Hence, timely diagnosis with combination therapy adopted at right time can improve the hyperglycaemic condition and worst condition of diabetic complications. It is evident that insulin with metformin provides beneficial effect in avoiding weight gain and hypoglycaemia. Herbal, poly-herbal and synthetic drug administration in combination form is a novel therapeutic approach for treatment diabetes and its complications. Hence this review will focus to justify the dual therapy can be a potentially good therapeutic approach to solve the problems of diabetic complications with special impact to diabetic neuropathy and nephropathy over monotherapy using preclinical and clinical evidences.

Cite this article:
Harmeet Kaur, Arvinder Kaur, Pankaj Kumar Prashar, Anamika Gautam, Ankita Sood, Sachin Kumar Singh, Monica Gulati, Narendra Kumar Pandey, Bimlesh Kumar. Clinical Impact of Combination Therapy in Diabetic Neuropathy and Nephropathy. Research Journal of Pharmacy and Technology. 2021; 14(6):3471-0. doi: 10.52711/0974-360X.2021.00603

Harmeet Kaur, Arvinder Kaur, Pankaj Kumar Prashar, Anamika Gautam, Ankita Sood, Sachin Kumar Singh, Monica Gulati, Narendra Kumar Pandey, Bimlesh Kumar. Clinical Impact of Combination Therapy in Diabetic Neuropathy and Nephropathy. Research Journal of Pharmacy and Technology. 2021; 14(6):3471-0. doi: 10.52711/0974-360X.2021.00603   Available on:

1.    Cahn, A. and W.T. Cefalu, Clinical considerations for use of initial combination therapy in type 2 diabetes. Diabetes Care, 2016. 39(Supplement 2): p. S137-S145.
2.    Jameshorani, M., et al., Comparative study on adding pioglitazone or sitagliptin to patients with type 2 diabetes mellitus insufficiently controlled with metformin. Open access Macedonian journal of medical sciences, 2017. 5(7): p. 955.
3.    Kharroubi, A.T. and H.M. Darwish, Diabetes mellitus: The epidemic of the century. World J Diabetes, 2015. 6(6): p. 850-67.
4.    Ren, J., et al., Hearing impairment in type 2 diabetics and patients with early diabetic nephropathy. Journal of diabetes and its complications, 2018. 32(6): p. 575-579.
5.    Egan, A.M. and S.F. Dinneen, What is diabetes? Medicine, 2014. 42(12): p. 679-681.
6.    Guillausseau, P.-J., et al., Abnormalities in insulin secretion in type 2 diabetes mellitus. Diabetes and metabolism, 2008. 34: p. S43-S48.
7.    Holland-Carter, L., et al., Impact on psychosocial outcomes of a nationally available weight management program tailored for individuals with type 2 diabetes: results of a randomized controlled trial. Journal of Diabetes and its Complications, 2017. 31(5): p. 891-897.
8.    Md Rashedul Islam Rashed1, A.S., Md Al Sabah3, and M.M. Momin4, Review of diabetes types and Care. International Journal of Current Research in Medical Sciences, 2018. 4(11).
9.    Lam, D.W. and D. LeRoith, The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes, 2012. 19(2): p. 93-6.
10.    Sotoudeh, R., Zahra Gholamnezhad Mousa-Al-Reza Hadjzadeh, and Azita Aghaei, "The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats.". Avicenna journal of phytomedicine, 2019. 9.5: p. 454.
11.    Harding, J.L., et al., Global trends in diabetes complications: a review of current evidence. Diabetologia, 2019. 62(1): p. 3-16.
12.    Ghosh, K., P. Dhillon, and G. Agrawal, Prevalence and detecting spatial clustering of diabetes at the district level in India. Journal of Public Health, 2019.
13.    Mathis, D., L. Vence, and C. Benoist, β-Cell death during progression to diabetes. Nature, 2001. 414(6865): p. 792.
14.    Scheen, A.J., Drug treatment of non-insulin-dependent diabetes mellitus in the 1990s. Drugs, 1997. 54(3): p. 355-368.
15.    Harjutsalo, V., L. Sjöberg, and J. Tuomilehto, Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. The Lancet, 2008. 371(9626): p. 1777-1782.
16.    Davies, J.L., et al., A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 1994. 371(6493): p. 130.
17.    Keenan, H.A., et al., Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes, 2010. 59(11): p. 2846-2853.
18.    Nejentsev, S., et al., Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature, 2007. 450(7171): p. 887.
19.    Hyttinen, V., et al., Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes, 2003. 52(4): p. 1052-1055.
20.    Davis-Richardson, A.G. and E.W. Triplett, A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia, 2015. 58(7): p. 1386-1393.
21.    Forbes, J.M. and M.E. Cooper, Mechanisms of diabetic complications. Physiological reviews, 2013. 93(1): p. 137-188.
22.    Kahn, S.E., et al., Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes, 1993. 42(11): p. 1663-1672.
23.    McAlister, F.A., et al., The risk of heart failure in patients with type 2 diabetes treated with oral agent monotherapy. European journal of heart failure, 2008. 10(7): p. 703-708.
24.    Rhee, S.Y., et al., Monotherapy in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J, 2017. 41(5): p. 349-356.
25.    Association, A.D., 8. Pharmacologic approaches to glycemic treatment. Diabetes Care, 2017. 40(Supplement 1): p. S64-S74.
26.    Harper, W., et al., Pharmacologic management of type 2 diabetes. Canadian Journal of Diabetes, 2013. 37: p. S61-S68.
27.    Aroda, V.R., et al., Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study. The Journal of Clinical Endocrinology and Metabolism, 2016. 101(4): p. 1754-1761.
28.    Maruthur, N.M., et al., Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann Intern Med, 2016. 164(11): p. 740-51.
29.    Sola, D., et al., Sulfonylureas and their use in clinical practice. Arch Med Sci, 2015. 11(4): p. 840-8.
30.    Morgan, C.L., et al., What next after metformin? A retrospective evaluation of the outcome of second-line, glucose-lowering therapies in people with type 2 diabetes. J Clin Endocrinol Metab, 2012. 97(12): p. 4605-12.
31.    Kasznicki, J. and J. Drzewoski, Heart failure in the diabetic population - pathophysiology, diagnosis and management. Arch Med Sci, 2014. 10(3): p. 546-56.
32.    Blonde, L., S. Dipp, and D. Cadena, Combination Glucose-Lowering Therapy Plans in T2DM: Case-Based Considerations. Adv Ther, 2018. 35(7): p. 939-965.
33.    Ko, S.H., et al., Antihyperglycemic Agent Therapy for Adult Patients with Type 2 Diabetes Mellitus 2017: A Position Statement of the Korean Diabetes Association. Diabetes Metab J, 2017. 41(5): p. 337-348.
34.    Scheen, A.J., SGLT2 inhibition: efficacy and safety in type 2 diabetes treatment. Expert Opin Drug Saf, 2015. 14(12): p. 1879-904.
35.    Kaur, G., et al., Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats. Anais da Academia Brasileira de Ciências, 2015. 87(1): p. 417-429.
36.    Kaur, G., A.S. Jaggi, and N. Singh, Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats. Journal of brachial plexus and peripheral nerve injury, 2010. 5(1): p. 3.
37.    Tölle, T.R., Challenges with current treatment of neuropathic pain. European journal of pain Supplements, 2010. 4(2): p. 161-165.
38.    Quintans, J.S., et al., Natural Products Evaluated in Neuropathic Pain Models‐A Systematic Review. Basic and clinical pharmacology and toxicology, 2014. 114(6): p. 442-450.
39.    Woolf, C.J. and R.J. Mannion, Neuropathic pain: aetiology, symptoms, mechanisms, and management. The lancet, 1999. 353(9168): p. 1959-1964.
40.    Dworkin, R.H., et al., Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain, 2007. 132(3): p. 237-251.
41.    Dworkin, R.H., et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. in Mayo Clinic Proceedings. 2010. Elsevier.
42.    Vo, T., A.S. Rice, and R.H. Dworkin, Non‐steroidal anti‐inflammatory drugs for neuropathic pain: How do we explain continued widespread use? Pain, 2009. 143(3): p. 169-171.
43.    Ngo, L.T., J.I. Okogun, and W.R. Folk, 21st century natural product research and drug development and traditional medicines. Natural product reports, 2013. 30(4): p. 584-592.
44.    Butler, M.S., Natural products to drugs: natural product-derived compounds in clinical trials. Natural product reports, 2008. 25(3): p. 475-516.
45.    Li, J.W.-H. and J.C. Vederas, Drug discovery and natural products: end of an era or an endless frontier? Science, 2009. 325(5937): p. 161-165.
46.    Gangadhar, M., et al., Future directions in the treatment of neuropathic pain: A review on various therapeutic targets. CNS and Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS and Neurological Disorders), 2014. 13(1): p. 63-81.
47.    Dworkin, R.H. and D.C. Turk, Accelerating the development of improved analgesic treatments: the ACTION public–private partnership. Pain Medicine, 2011. 12(s3).
48.    Tesfaye, S., et al., Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study”–a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. PAIN®, 2013. 154(12): p. 2616-2625.
49.    Ye, W., et al., Treatment patterns associated with Duloxetine and Venlafaxine use for Major Depressive Disorder. BMC psychiatry, 2011. 11(1): p. 19.
50.    Díaz-Triste, N.E., et al., Pharmacological evidence for the participation of NO–c GMP–K ATP pathway in the gastric protective effect of curcumin against indomethacin-induced gastric injury in the rat. European journal of pharmacology, 2014. 730: p. 102-106.
51.    Li, Y., et al., Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. International journal of medical sciences, 2013. 10(4): p. 377.
52.    Kaur, M., et al., Protective effect of co-administration of curcumin and sildenafil in alcohol induced neuropathy in rats. European journal of pharmacology, 2017. 805: p. 58-66.
53.    Jeon, Y., et al., Curcumin could prevent the development of chronic neuropathic pain in rats with peripheral nerve injury. Current Therapeutic Research, 2013. 74: p. 1-4.
54.    Anand, P., et al., Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 2007. 4(6): p. 807-818.
55.    Vyas, A., et al., Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Current pharmaceutical design, 2013. 19(11): p. 2047-2069.
56.    Argyriou, A.A., et al., Chemotherapy-induced peripheral neuropathy in adults: a comprehensive update of the literature. Cancer Manag Res, 2014. 6: p. 135-47.
57.    Moorthi, C. and K. Kathiresan, Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. Journal of Medical Hypotheses and Ideas, 2013. 7(1): p. 15-20.
58.    Aggarwal, B.B. and K.B. Harikumar, Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The international journal of biochemistry and cell biology, 2009. 41(1): p. 40-59.
59.    Ahmad, M., Protective effects of curcumin against lithium-pilocarpine induced status epilepticus, cognitive dysfunction and oxidative stress in young rats. Saudi J Biol Sci, 2013. 20(2): p. 155-62.
60.    Zhao, X., et al., Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacology, 2012. 62(2): p. 843-854.
61.    Jain, K., S. Sood, and K. Gowthamarajan, Modulation of cerebral malaria by curcumin as an adjunctive therapy. The Brazilian Journal of Infectious Diseases, 2013. 17(5): p. 579-591.
62.    Mendonça, L.M., et al., Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells. Neurotoxicology, 2013. 34: p. 205-211.
63.    Muthuraman, A. and N. Singh, Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC complementary and alternative medicine, 2011. 11(1): p. 24.
64.    Ndisang, J.F., A. Vannacci, and S. Rastogi, Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. Journal of Diabetes Research, 2017. 2017: p. 1-3.
65.    Xu, X.-X., et al., Superior renoprotective effects of the combination of breviscapine with enalapril and its mechanism in diabetic rats. Phytomedicine, 2013. 20(10): p. 820-827.
66.    Najafian, B., C.E. Alpers, and A.B. Fogo, Pathology of human diabetic nephropathy, in Diabetes and the Kidney. 2011, Karger Publishers. p. 36-47.
67.    Ameh, O.I., et al., Global, Regional, and Ethnic Differences in Diabetic Nephropathy, in Diabetic Nephropathy. 2019. p. 33-44.
68.    JORGE L. GROSS, M.M.J.D.A., MD SANDRA P. SILVEIRO, MD and M.M.L.C. LU ́IS HENRIQUE CANANI, MD THEMIS ZELMANOVITZ, MD, Diabetic Nephropathy: Diagnosis, Prevention, and Treatment. Diabetes care, 2005. 28: p. 164-176.
69.    Widjajakusuma, E.C., et al., Phytochemical screening and preliminary clinical trials of the aqueous extract mixture of Andrographis paniculata (Burm. f.) Wall. ex Nees and Syzygium polyanthum (Wight.) Walp leaves in metformin treated patients with type 2 diabetes. Phytomedicine, 2019. 55: p. 137-147.
70.    Sankar, D., et al., Sesame oil exhibits synergistic effect with anti-diabetic medication in patients with type 2 diabetes mellitus. Clin Nutr, 2011. 30(3): p. 351-8.
71.    P. Berhanu, A.P.a.S.Y., Effect of pioglitazone in combination with insulin therapy on glycaemic control, insulin dose requirement and lipid profile in patients with type 2 diabetes previously poorly controlled with combination therapy. Diabetes, Obesity and Metabolism, 2007: p. 512-520.
72.    Matthews, D.R., et al., Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. The Lancet, 2019. 394(10208): p. 1519-1529.
73.    Yu, H.M., et al., A comparison study on efficacy, insulin sensitivity and safety of Glimepiride/Metformin fixed dose combination versus glimepiride single therapy on type 2 diabetes mellitus patients with basal insulin therapy. Diabetes Res Clin Pract, 2019. 155: p. 107796.
74.    Bernard Zinman, S.B.H., Jan Neuman, Hertzel C Gerstein, Ravi R Retnakaran, Janet Raboud, Ying Qi, Anthony J G Hanley, Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. 2010. 376.
75.    Tatsumi, F., et al., Concomitant use of miglitol and mitiglinide as initial combination therapy in type 2 diabetes mellitus. Diabetes Res Clin Pract, 2013. 101(1): p. 35-44.
76.    Fonseca, V., et al., Efficacy and safety of sitagliptin added to ongoing metformin and pioglitazone combination therapy in a randomized, placebo-controlled, 26-week trial in patients with type 2 diabetes. J Diabetes Complications, 2013. 27(2): p. 177-83.
77.    Bellido, D., et al., Intensification of Basal Insulin Therapy with Lixisenatide in Patients with Type 2 Diabetes in a Real-World Setting: The BASAL-LIXI Study. Curr Ther Res Clin Exp, 2018. 89: p. 37-42.
78.    White, W.B., et al., Alogliptin in Patients with Type 2 Diabetes Receiving Metformin and Sulfonylurea Therapies in the EXAMINE Trial. Am J Med, 2018. 131(7): p. 813-819 e5.
79.    Kanazawa, I., et al., Long-term efficacy and safety of vildagliptin add-on therapy in type 2 diabetes mellitus with insulin treatment. Diabetes Res Clin Pract, 2017. 123: p. 9-17.
80.    Wang, J.S., et al., Acarbose plus metformin fixed-dose combination outperforms acarbose monotherapy for type 2 diabetes. Diabetes Res Clin Pract, 2013. 102(1): p. 16-24.
81.    R. Gomis1, R.-M.E., R. Jones3, H. J. Woerle4 and K. A. Dugi5, Efficacy and safety of initial combination therapy with linagliptin and pioglitazone in patients with inadequately controlled type 2 diabetes: a randomized, double-blind, placebo-controlled study. DIABETES, OBESITY AND METABOLISM, 2011. 13: p. 653-661.
82.    Julio Rosenstock, L.C., 2, et al., Initial Combination Therapy With Canagliflozin Plus Metformin Versus Each Component as Monotherapy for Drug-Na ̈ıve Type 2 Diabetes. Diabetes Care, 2016.
83.    Ralph A. DeFronzo, A.L., 2, D. 344 SanjayPatel, ReneeKaste,, and a.U.C.B. Hans J. Woerle, Combination of Empagliflozin and Linagliptin as Second-Line Therapy in Subjects With Type 2 Diabetes Inadequately Controlled on Metformin. Diabetes Care, 2015. 38: p. 384-393.
84.    K. H. Yoon1, H.S., R. Teng2, G. T. Golm2, M. Lee2, E. A. O’Neill2, K. D. Kaufman2 and B. J. Goldstein2, Efficacy and safety of initial combination therapy with sitagliptin and pioglitazone in patients with type 2 diabetes: a 54-week study. Diabetes, Obesity and Metabolism, 2012.
85.    Konya, H., et al., Effects of combination therapy with mitiglinide and voglibose on postprandial plasma glucose in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes, 2013. 6: p. 317-25.
86.    Ishii, H., et al., Efficacy of combination therapy with sitagliptin and low-dose glimepiride in Japanese patients with type 2 diabetes. J Clin Med Res, 2014. 6(2): p. 127-32.
87.    Chen, Y., et al., Effects of Different Doses of Irbesartan Combined With Spironolactone on Urinary Albumin Excretion Rate in Elderly Patients With Early Type 2 Diabetic Nephropathy. Am J Med Sci, 2018. 355(5): p. 418-424.
88.    Roozbeh, J., et al., Captopril and combination therapy of captopril and pentoxifylline in reducing proteinuria in diabetic nephropathy. Ren Fail, 2010. 32(2): p. 172-8.
89.    Persson, F., et al., Aliskiren in combination with losartan reduces albuminuria independent of baseline blood pressure in patients with type 2 diabetes and nephropathy. Clin J Am Soc Nephrol, 2011. 6(5): p. 1025-31.
90.    Momeni, A., et al., Evaluation of spironolactone plus hydrochlorothiazide in reducing proteinuria in type 2 diabetic nephropathy. J Renin Angiotensin Aldosterone Syst, 2015. 16(1): p. 113-8.
91.    Lukashevich, V., et al., Efficacy of vildagliptin in combination with insulin in patients with type 2 diabetes and severe renal impairment. Vasc Health Risk Manag, 2013. 9: p. 21-8.
92.    Fallahzadeh, M.K., et al., Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial. Am J Kidney Dis, 2012. 60(6): p. 896-903.
93.    Esteghamati, A., et al., Long-term effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: a randomized clinical trial. Nephrol Dial Transplant, 2013. 28(11): p. 2823-33.
94.    Heerspink, H.J., et al., Effects of a fixed combination of perindopril and indapamide in patients with type 2 diabetes and chronic kidney disease. Eur Heart J, 2010. 31(23): p. 2888-96.
95.    Morikawa, A., et al., Pioglitazone reduces urinary albumin excretion in renin-angiotensin system inhibitor-treated type 2 diabetic patients with hypertension and microalbuminuria: the APRIME study. Clin Exp Nephrol, 2011. 15(6): p. 848-53.
96.    Zhu, H., et al., Telmisartan combined with probucol effectively reduces urinary protein in patients with type 2 diabetes: A randomized double-blind placebo-controlled multicenter clinical study. J Diabetes, 2016. 8(5): p. 677-85.
97.    Bakris, G.L., et al., Effects of an ACE inhibitor/calcium antagonist combination on proteinuria in diabetic nephropathy. Kidney Int, 1998. 54(4): p. 1283-9.
98.    Jacobsen, P., et al., Additive effect of ACE inhibition and angiotensin II receptor blockade in type I diabetic patients with diabetic nephropathy. J Am Soc Nephrol, 2003. 14(4): p. 992-9.
99.    Hamed, A.T., M.M. Taha, and L.M. Nasser, Renoprotective effect of aliskiren monotherapy and aliskiren−pentoxifylline combination in hypertensive-diabetic type 2 patients with diabetic nephropathy. Bulletin of Faculty of Pharmacy, Cairo University, 2013. 51(2): p. 221-227.
100.    Luo, Y., et al., Use of Ophiocordyceps sinensis (syn. Cordyceps sinensis) combined with angiotensin-converting enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB) versus ACEI/ARB alone in the treatment of diabetic kidney disease: a meta-analysis. Ren Fail, 2015. 37(4): p. 614-34.
101.    Massone, F.B.a.A., Combination of Alpha Lipoic Acid and Superoxide Dismutase Leads to Physiological and Symptomatic Improvements in Diabetic Neuropathy. 2012. 12(1): p. 29-34.
102.    Xu, Q., et al., Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res Clin Pract, 2013. 101(2): p. 99-105.
103.    Hanna, M., C. O'Brien, and M.C. Wilson, Prolonged-release oxycodone enhances the effects of existing gabapentin therapy in painful diabetic neuropathy patients. Eur J Pain, 2008. 12(6): p. 804-13.
104.    Vasudevan, D., M.M. Naik, and Q.I. Mukaddam, Efficacy and safety of methylcobalamin, alpha lipoic acid and pregabalin combination versus pregabalin monotherapy in improving pain and nerve conduction velocity in type 2 diabetes associated impaired peripheral neuropathic condition. [MAINTAIN]: Results of a pilot study. Ann Indian Acad Neurol, 2014. 17(1): p. 19-24.
105.    Gilron, I., et al., Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. The Lancet, 2009. 374(9697): p. 1252-1261.
106.    Tesfaye, S., et al., Duloxetine and pregabalin: high-dose monotherapy or their combination? The "COMBO-DN study"--a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain, 2013. 154(12): p. 2616-25.
107.    Jiang, D.Q., et al., Efficacy and safety of prostaglandin E1 plus lipoic acid combination therapy versus monotherapy for patients with diabetic peripheral neuropathy. J Clin Neurosci, 2016. 27: p. 8-16.
108.    Mimenza Alvarado, A. and S. Aguilar Navarro, Clinical Trial Assessing the Efficacy of Gabapentin Plus B Complex (B1/B12) versus Pregabalin for Treating Painful Diabetic Neuropathy. J Diabetes Res, 2016. 2016: p. 4078695.
109.    Radica Z. Alicic, M.T.R., * and Katherine R. Tuttle*, Diabetic Kidney Disease Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology. 12(12).
110.    Song, K.H., et al., Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus. J Diabetes Investig, 2019. 10(3): p. 745-752.
111.    Rashid, M., et al., Fenofibrate Potentiates the Antihyperglycemic, Antidyslipidemic and Hepatoprotective Activity of Pioglitazone on Alloxan-Induced Diabetic Rats. Pharmacologia, 2016. 7(1): p. 53-59.
112.    Miyazaki, Y., et al., Rosiglitazone decreases albuminuria in type 2 diabetic patients. Kidney international, 2007. 72(11): p. 1367-1373.
113.    Holman, R.R., et al., 10-year follow-up of intensive glucose control in type 2 diabetes. New England Journal of Medicine, 2008. 359(15): p. 1577-1589.
114.    Lachin, J.M., et al., Renal function in type 2 diabetes with rosiglitazone, metformin, and glyburide monotherapy. Clinical Journal of the American Society of Nephrology, 2011. 6(5): p. 1032-1040.
115.    Iqbal, Z., et al., Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin Ther, 2018. 40(6): p. 828-849.
116.    Yagihashi, S. and H. Mizukami, Diabetic Neuropathy, in Diabetes and Aging-related Complications. 2018. p. 31-43.
117.    Catherine N. Tchanque-Fossuo, M., MS; Andrew M. Wishy, DO; Kaitlyn I. M. West; David L. Dawson, MD; Sara E. Dahle, DPM, MPH; and John G. Carson, MD, Reclaiming Autologous Amputated Tissue for Limb Salvage of a Diabetic Foot Burn with Underlying Critical Limb Ischemia. Advances in skin and wound, 2018. 31(1): p. 596-600.
118.    Mixcoatl-Zecuatl, T. and N.A. Calcutt, Biology and Pathophysiology of Painful Diabetic Neuropathy, in Painful Diabetic Polyneuropathy. 2013. p. 13-26.
119.    Jaggi, A.S., V. Jain, and N. Singh, Animal models of neuropathic pain. Fundamental and clinical pharmacology, 2011. 25(1): p. 1-28.
120.    Ueda, H., Molecular mechanisms of neuropathic pain–phenotypic switch and initiation mechanisms. Pharmacology and therapeutics, 2006. 109(1): p. 57-77.
121.    Bansode, V.J., et al., Ameliorative effect of ethyl pyruvate in neuropathic pain induced by chronic constriction injury of sciatic nerve. Indian Journal of Pain, 2014. 28(2): p. 82.
122.    Bridges, D., S. Thompson, and A. Rice, Mechanisms of neuropathic pain. British journal of anaesthesia, 2001. 87(1): p. 12-26.
123.    Chaplan, S.R., et al., Quantitative assessment of tactile allodynia in the rat paw. Journal of neuroscience methods, 1994. 53(1): p. 55-63.
124.    Yoon, C., et al., Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain, 1994. 59(3): p. 369-376.
125.    Cohen, S.P. and J. Mao, Neuropathic pain: mechanisms and their clinical implications. Bmj, 2014. 348(f7656): p. 1-12.
126.    Liu, X., et al., The risk factors for diabetic peripheral neuropathy: A meta-analysis. PLoS One, 2019. 14(2): p. e0212574.
127.    Smith, A.G. and J.R. Singleton, Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications, 2013. 27(5): p. 436-42.
128.    Solomon Tesfaye, M.D., Nish Chaturvedi, M.D., Simon E.M. Eaton, D.M., John D. Ward, M.D., Christos Manes, M.D., Constantin Ionescu-Tirgoviste, M.D., Daniel R. Witte, Ph.D., and John H. Fuller, M.A.,, Vascular Risk Factors and Diabetic Neuropathy. The new england journal of medicine, 2005. 352(4).
129.    De Visser, A., et al., The adjuvant effect of hypertension upon diabetic peripheral neuropathy in experimental type 2 diabetes. Neurobiol Dis, 2014. 62: p. 18-30.
130.    Battula, P., et al., Prevalence of sensory peripheral neuropathy in diabetic patients at diabetes care centre: a cross sectional study. International Journal of Research in Medical Sciences, 2017. 5(9).
131.    Ziegler, D., et al., Prevalence and risk factors of neuropathic pain in survivors of myocardial infarction with pre-diabetes and diabetes. The KORA Myocardial Infarction Registry. Eur J Pain, 2009. 13(6): p. 582-7.
132.    Ziegler, D., et al., Epidemiology of polyneuropathy in diabetes and prediabetes. Handb Clin Neurol, 2014. 126: p. 3-22.
133.    Papanas, N. and D. Ziegler, Risk Factors and Comorbidities in Diabetic Neuropathy: An Update 2015. Rev Diabet Stud, 2015. 12(1-2): p. 48-62.
134.    Win, M., et al., Prevalence of peripheral neuropathy and its impact on activities of daily living in people with type 2 diabetes mellitus. Nurs Health Sci, 2019.
135.    Liu, M., et al., Smoking increases the risk of diabetic foot amputation: A meta-analysis. Exp Ther Med, 2018. 15(2): p. 1680-1685.
136.    Koike, H., Myelopathy and Neuropathy Associated With Alcoholism, in Neuroscience of Alcohol. 2019. p. 195-205.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available