Author(s): Nouran Yonis, Moustafa Sayed


DOI: 10.52711/0974-360X.2021.00593   

Address: Nouran Yonis1, Moustafa Sayed1,2
1Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt.
2The Center of Drug Research and Development, The British University in Egypt, El-Shorouk, Egypt.
*Corresponding Author

Published In:   Volume - 14,      Issue - 6,     Year - 2021

Objective This review will focus on serotonin transporter gene (5-HTTLP), Na/K ATPase isoforms, Fat-mass and obesity-associated gene (FTO) and mTOR signaling pathway. Methods PubMed, Scopus and Google scholar database was the primary source to search with relevant key words. The search included all English-language papers published since 1974. Results Across the studies analyzed in this review, the association between obesity and depression is still controversial. With some emerging data pointing at a clear relationship between the two, however, others may claim the opposite. Starting with metabolism and nutrients uptake and moving to energy production, it seems that sodium pump and its different isoforms could be a partner with serotonin whether it leads to alteration in BMI or fluctuation in mood and behavior. The rising role of FTO in both obesity and depression with the exciting data that shows how mTOR pathway could be regulating its function, sodium pump once again could have a role in this play. Conclusion To sum up, it is still not clear how these three genes could be connected to each other, but looks like they deserve more focus in future research endeavors.

Cite this article:
Nouran Yonis, Moustafa Sayed. Obesity and Depression: Could some shared genes explain the relationship?. Research Journal of Pharmacy and Technology. 2021; 14(6):3409-5. doi: 10.52711/0974-360X.2021.00593

Nouran Yonis, Moustafa Sayed. Obesity and Depression: Could some shared genes explain the relationship?. Research Journal of Pharmacy and Technology. 2021; 14(6):3409-5. doi: 10.52711/0974-360X.2021.00593   Available on:

1.    Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. J Am Med Assoc. 2006;295(13):1549-1555. doi:10.1001/jama.295.13.1549
2.    de Wit L, Luppino F, van Straten A, Penninx B, Zitman F, Cuijpers P. Depression and obesity: A meta-analysis of community-based studies. Psychiatry Res. 2010;178(2):230-235. doi: 10.1016/j.psychres.2009.04.015
3.    Pi-Sunyer FX. Medical hazards of obesity. Ann Intern Med. 1993;119(7 II):655-660. doi:10.7326/0003-4819-119-7_part_2-199310011-00006
4.    Cui R. Editorial (Thematic Selection: A Systematic Review of Depression). Curr Neuropharmacol. 2015;13(4):480-480. doi:10.2174/1570159x1304150831123535
5.    Keitner GI, Miller IW. Family functioning and major depression: An overview. Am J Psychiatry. 1990;147(9):1128-1137. doi:10.1176/ajp.147.9.1128
6.    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):2011-2030. doi: 10.1371/journal.pmed.0030442
7.    Penninx BWJH, Beekman ATF, Honig A, et al. Depression and cardiac mortality: Results from a community-based longitudinal study. Arch Gen Psychiatry. 2001;58(3):221-227. doi:10.1001/archpsyc.58.3.221
8.    Scott KM, McGee MA, Wells JE, Oakley Browne MA. Obesity and mental disorders in the adult general population. J Psychosom Res. 2008;64(1):97-105. doi: 10.1016/j.jpsychores.2007.09.006
9.    Atlantis E, Baker M. Obesity effects on depression: Systematic review of epidemiological studies. Int J Obes. 2008;32(6):881-891. doi:10.1038/ijo.2008.54
10.    Orlowski J1 LJ. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs.-PubMed-NCBI. 2839491?dopt=Abstract. Accessed March 21, 2020.
11.    Young RM LJ. Tissue distribution of mRNAs encoding the alpha isoforms and beta subunit of rat Na+, K+-ATPase. - PubMed - NCBI. Accessed March 21, 2020.
12.    James PF, Grupp IL, Grupp G, et al. Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell. 1999;3(5):555-563. doi:10.1016/s1097-2765(00)80349-4
13.    Day FR, Loos RJF. Developments in Obesity Genetics in the Era of Genome-Wide Association Studies. J Nutrigenet Nutrigenomics. 2011;4(4):222-238. doi:10.1159/000332158
14.    Russo JJ, Manuli MA, Ismail-Beigi F, Sweadner KJ, Edelman IS. Na+-K+-ATPase in adipocyte differentiation in culture. Am J Physiol-Cell Physiol. 1990;259(6 28-6). doi:10.1152/ajpcell.1990.259.6.c968
15.    Orlowski J1 LJ. Tissue-specific and developmental regulation of rat Na, K-ATPase catalytic alpha isoform and beta subunit mRNAs.-PubMed-NCBI. 2839491?dopt=Abstract. Published 1988. Accessed March 19, 2020.
16.    Kawakami K, Onaka T, Iwase M, Homma I, Ikeda K. Hyperphagia and Obesity in Na,K-ATPase α2 Subunit-Defective Mice. Obes Res. 2005;13(10):1661-1671. doi:10.1038/ oby.2005.204
17.    Elisa Acosta, Julio Avila, Ali Mobasheri PM-V. Na+, K+ -ATPase genes are down-regulated during adipose stem cell differentiation. [Frontiers Biosci. 2011. Accessed March 19, 2020.
18.    Ferrer-Martínez A, Felipe A, Casado FJ, Pastor-Anglada M. Differential regulation of Na+-K+-ATPase in the obese Zucker rat. Am J Physiol - Regul Integr Comp Physiol. 1996;271(5 40-5). doi:10.1152/ajpregu.1996.271.5.r1123
19.    The Genetics of Obesity - Claude Bouchard - Google Books. Accessed March 19, 2020.
20.    Kirshenbaum GS, Clapcote SJ, Duffy S, et al. Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase α3 sodium pump. Proc Natl Acad Sci U S A. 2011;108(44):18144-18149. doi:10.1073/pnas.1108416108
21.    Naylor GJ, Smith AHW. Defective genetic control of sodium-pump density in manic depressive psychosis. Psychol Med. 1981;11(2):257-263. doi:10.1017/S0033291700052077
22.    Li B, Hertz L, Peng L. Cell-specific mRNA alterations in Na+, K+-ATPase α and β Isoforms and FXYD in mice treated chronically with carbamazepine, an anti-bipolar drug. Neurochem Res. 2013;38(4):834-841. doi:10.1007/s11064-013-0986-3
23.    Mynett-Johnson L, Murphy V, McCormack J, et al. Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry. 1998;44(1):47-51. doi:10.1016/S0006-3223(97)00343-0
24.    Kirshenbaum GS, Burgess CR, Déry N, Fahnestock M, Peever JH, Roder JC. Attenuation of mania-like behavior in Na+,K+-ATPase α3 mutant mice by prospective therapies for bipolar disorder: Melatonin and exercise. Neuroscience. 2014;260: 195-204. doi:10.1016/j. neuroscience.2013.12.011
25.    Li L, Wu H, Qian J, et al. Decreased Na+/K+ ATPase α1 (ATP1A1) gene expression in major depression patients’ peripheral blood. Cent Eur J Biol. 2013;8(11):1077-1082. doi:10.2478/s11535-013-0207-8
26.    Zhao J, Guo X, Du Y, et al. Correlative study of peripheral ATP1A1 gene expression level to anxiety severity score on major depressive disorder patients. J Basic Clin Physiol Pharmacol. 2016;27(6):563-567. doi:10.1515/jbcpp-2015-0148
27.    LI Suqin, MA Xinxin, LI Xiaojing et al. Myocardium Na~+, K~+-ATPase activity and its mRNA expression in depression in rats--《Hebei Medical Journal》2009年12期. htm. Published 2009. Accessed March 20, 2020.
28.    Muldoon MF, Mackey RH, Williams K V., Korytkowski MT, Flory JD, Manuck SB. Low Central Nervous System Serotonergic Responsivity Is Associated with the Metabolic Syndrome and Physical Inactivity. J Clin Endocrinol Metab. 2004;89(1):266-271. doi:10.1210/jc.2003-031295
29.    Rossi-Fanelli F, Laviano A. Role of brain tryptophan and serotonin in secondary anorexia. In: Advances in Experimental Medicine and Biology. Vol 527. Adv Exp Med Biol; 2003:225-232. doi:10.1007/978-1-4615-0135-0_26
30.    Blundell JE. Serotonin manipulations and the structure of feeding behaviour. Appetite. 1986; 7:39-56. doi:10.1016/S0195-6663(86)80051-4
31.    FERNSTROM MH. Depression, Antidepressants, and Body Weight Change. Ann N Y Acad Sci. 1989;575(1):31-40. doi:10.1111/j.1749-6632.1989.tb53229.x
32.    Nemeroff CB, Owens MJ. The role of serotonin in the pathophysiology of depression: as important as ever. Clin Chem. 2009;55(8):1578-1579. doi:10.1373/clinchem.2009.123752
33.    Ramamoorthy S, Bauman AL, Moore KR, et al. Antidepressant- and cocaine-sensitive human serotonin transporter: Molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A. 1993;90(6):2542-2546. doi:10.1073/pnas.90.6.2542
34.    Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (80-). 1996;274(5292):1527-1531. doi:10.1126/science.274.5292.1527
35.    Sookoian S, Gemma C, García SI, et al. Short allele of serotonin transporter gene promoter is a risk factor for obesity in adolescents. Obesity. 2007;15(2):271-276. doi:10.1038/oby.2007.519
36.    Avshalom C, Hariri AR, Andrew H, Uher R, Moffitt TE. Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry. 2010;167(5):509-527. doi:10.1176/appi.ajp.2010.09101452
37.    Borkowska A, Bieliåski M, Szczęsny W, et al. Effect of the 5-HTTLPR polymorphism on affective temperament, depression and body mass index in obesity. J Affect Disord. 2015;184:193-197. doi:10.1016/j.jad.2015.05.061
38.    van Strien T, van der Zwaluw CS, Engels RCME. Emotional eating in adolescents: A gene (SLC6A4/5-HTT) - Depressive feelings interaction analysis. J Psychiatr Res. 2010;44(15):1035-1042. doi:10.1016/j.jpsychires.2010.03.012
39.    Markus CR, Capello AEM. Contribution of the 5-HTTLPR gene by neuroticism on weight gain in male and female participants. Psychiatr Genet. 2012;22(6):279-285. doi:10.1097/YPG.0b013e328358632a
40.    Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch Gen Psychiatry. 2011;68(5):444-454. doi:10.1001/archgenpsychiatry.2010.189
41.    Avshalom Caspi E a. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene | Science. 2003. Accessed March 20, 2020.
42.    Bieliński M, Tomaszewska M, Jaracz M, et al. The polymorphisms in serotonin-related genes (5-HT2A and SERT) and the prevalence of depressive symptoms in obese patients. Neurosci Lett. 2015;586:31-35. doi:10.1016/j.neulet.2014.12.012
43.    Sookoian S, Gemma C, García SI, et al. Short Allele of Serotonin Transporter Gene Promoter Is a Risk Factor for Obesity in Adolescents*. Obesity. 2007;15(2):271-276. doi:10.1038/oby.2007.519
44.    Sookoian S, Gianotti TF, Gemma C, Burgueño A, Pirola CJ. Contribution of the Functional 5-HTTLPR Variant of the SLC6A4 Gene to Obesity Risk in Male Adults. Obesity. 2008;16(2):488-491. doi:10.1038/oby.2007.64
45.    Lan MY, Chang YY, Chen WH, Kao YF, Lin HS, Liu JS. Serotonin transporter gene promoter polymorphism is associated with body mass index and obesity in non-elderly stroke patients. J Endocrinol Invest. 2009;32(2): 119-122. doi:10.1007/BF03345699
46.    Božina T, Sertić J, Lovrić J, Jelaković B, Jovanović N, Božina N. Contribution of 5-HTTLPR and BDNF gene variants to obesity risk. Biochem medica. January 2014: A159.
47.    Dias H, Muc M, Padez C, Manco L. Association of polymorphisms in 5-HTT (SLC6A4) and MAOA genes with measures of obesity in young adults of Portuguese origin. Arch Physiol Biochem. 2016;122(1):8-13. doi:10.3109/13813455. 2015.1111390
48.    Fuemmeler BF, Agurs-Collins TD, Mcclernon FJ, et al. Genes Implicated in Serotonergic and Dopaminergic Functioning Predict BMI Categories. Obesity. 2008;16(2):348-355. doi:10.1038/oby.2007.65
49.    Mergen H, Karaaslan Ç, Mergen M, Deniz Özsoy E, Özata M. Lepr, ADBR3, IRS-1 and 5-HTT Genes Polymorphisms do not Associate with Obesity. Endocr J. 2007;54(1):89-94. doi:10.1507/endocrj.K06-023
50.    Hinney A, Barth N, Ziegler A, et al. Serotonin transporter gene-linked polymorphic region: Allele distributions in relationship to body weight and in anorexia nervosa. Life Sci. 1997;61(21):PL295-PL303. doi:10.1016/S0024-3205(97)00888-6
51.    Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA - J Am Med Assoc. 2009;301(23):2462-2471. doi:10.1001/jama.2009.878
52.    Gillespie NA, Whitfield JB, Williams B, Heath AC, Martin NG. The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression. Psychol Med. 2005;35(1):101-111. doi:10.1017/S0033291704002727
53.    Power T, Stewart R, Ancelin ML, Jaussent I, Malafosse A, Ritchie K. 5-HTTLPR genotype, stressful life events and late-life depression: No evidence of interaction in a French population. Neurobiol Aging. 2010;31(5):886-887. doi:10.1016/j. neurobiolaging.2008.06.006
54.    Kenna GA, Roder-Hanna N, Leggio L, et al. Association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism with psychiatric disorders: Review of psychopathology and pharmacotherapy. Pharmgenomics Pers Med. 2012;5(1):19-35. doi:10.2147/PGPM.S23462
55.    Clarke H, Flint J, Attwood AS, Munafó MR. Association of the 5-HTTLPR genotype and unipolar depression: A meta-analysis. Psychol Med. 2010;40(11):1767-1778. doi:10.1017/ S0033291710000516
56.    Gotlib IH, Joormann J, Minor KL, Hallmayer J. HPA Axis Reactivity: A Mechanism Underlying the Associations Among 5-HTTLPR, Stress, and Depression. Biol Psychiatry. 2008;63(9):847-851. doi:10.1016/j.biopsych.2007.10.008
57.    Pezawas L, Meyer-Lindenberg A, Drabant EM, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: A genetic susceptibility mechanism for depression. Nat Neurosci. 2005;8(6):828-834. doi:10.1038/nn1463
58.    Cervilla JA, Rivera M, Molina E, et al. The 5-HTTLPR s/s genotype at the serotonin transporter gene (SLC6A4) increases the risk for depression in a large cohort of primary care attendees: The PREDICT-gene study. Am J Med Genet Part B Neuropsychiatr Genet. 2006;141B(8):912-917. doi:10.1002/ajmg.b.30455
59.    Kaufman J, Yang BZ, Douglas-Palumberi H, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry. 2006;59(8):673-680. doi:10.1016/j.biopsych. 2005.10.026
60.    Ritchie K, Jaussent I, Stewart R, et al. Association of adverse childhood environment and 5-HTTLPR genotype with late-life depression. J Clin Psychiatry. 2009;70(9):1281-1288. doi:10.4088/JCP.08m04510
61.    Gibb BE, Benas JS, Grassia M, McGeary J. Children’s attentional biases and 5-HTTLPR genotype: Potential mechanisms linking mother and child depression. J Clin Child Adolesc Psychol. 2009;38(3):415-426. doi:10.1080/15374410902851705
62.    Carver CS, Johnson SL, Joormann J, Lemoult J, Cuccaro ML. Childhood adversity interacts separately with 5-HTTLPR and BDNF to predict lifetime depression diagnosis. J Affect Disord. 2011;132(1-2):89-93. doi:10.1016/j.jad.2011.02.001
63.    Gerken T, Girard CA, Tung YCL, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science (80-). 2007;318(5855):1469-1472. doi:10.1126/science.1151710
64.    Jia G, Yang C-G, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 2008;582(23-24):3313-3319. doi:10.1016/j.febslet.2008.08.019
65.    Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885-887. doi:10.1038/nchembio.687
66.    Han Z, Niu T, Chang J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature. 2010;464(7292):1205-1209. doi:10.1038/nature08921
67.    Meyre D, Proulx K, Kawagoe-Takaki H, et al. Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes. 2010;59(1):311-318. doi:10.2337/db09-0703
68.    Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971-3975. doi:10.1073/pnas.71.10.3971
69.    Jeffrey A. Kowalak E a. novel method for the determination of posttranscriptional modification in RNA by mass spectrometry | Nucleic Acids Research | Oxford Academic. 1014860?redirectedFrom=fulltext. Accessed March 21, 2020.
70.    Sun L, Ma L, Zhang H, et al. FTO deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics. 2019;9(3):721-733. doi:10.7150/thno.31562
71.    Li, Zejuan et. a. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase-ScienceDirect. pii/S1535610816305608. Accessed March 21, 2020.
72.    Milaneschi Y, Lamers F, Mbarek H, Hottenga JJ, Boomsma DI, Penninx BWJH. The effect of FTO rs9939609 on major depression differs across MDD subtypes. Mol Psychiatry. 2014;19(9):960-962. doi:10.1038/mp.2014.4
73.    Timothy M. Frayling et. a. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. pmc/articles/PMC2646098/. Accessed March 21, 2020.
74.    Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):1200-1210. doi:10.1371/journal.pgen.0030115
75.    Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937-948. doi:10.1038/ng.686
76.    Monda KL, Chen GK, Taylor KC, et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet. 2013;45(6):690-696. doi:10.1038/ng.2608
77.    Li H, Kilpeläinen TO, Liu C, et al. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians. Diabetologia. 2012;55(4):981-995. doi:10.1007/s00125-011-2370-7
78.    Li S, Zhao JH, Luan J, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr. 2010;91(1):184-190. doi:10.3945/ajcn.2009.28403
79.    Margarita Rivera Interaction between the FTO gene, body mass index and depression: meta-analysis of 13701 individuals | The British Journal of Psychiatry | Cambridge Core. D450CE1FCB63C971896F9D59002D4414. Accessed March 21, 2020.
80.    Samaan Z, Anand S, Zhang X, et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry. 2013;18(12):1281-1286. doi:10.1038/mp.2012.160
81.    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-484. doi:10.1016/ j.cell.2006.01.016
82.    Inoki K, Ouyang H, Zhu T, et al. TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell. 2006;126(5):955-968. doi:10.1016/j.cell.2006.06.055
83.    Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. 2012;149(2):274-293. doi:10.1016/j.cell. 2012.03.017
84.    Gulati P, Cheung MK, Antrobus R, et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci U S A. 2013;110(7):2557-2562. doi:10.1073/pnas.1222796110
85.    Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: Identification of protein-protein interactions and characterization of a core protein. J Mol Biol. 1999;285(1):183-195. doi:10.1006/jmbi.1998.2316
86.    Cheung MK, Gulati P, O’Rahilly S, Yeo GSH. FTO expression is regulated by availability of essential amino acids. Int J Obes. 2013;37(5):744-747. doi:10.1038/ijo.2012.77
87.    McMurray F, Church CD, Larder R, et al. Adult Onset Global Loss of the Fto Gene Alters Body Composition and Metabolism in the Mouse. Tschöp MH, ed. PLoS Genet. 2013;9(1):e1003166. doi:10.1371/journal.pgen.1003166
88.    Yeh WC, Bierer BE, McKnight SL. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci U S A. 1995;92(24):11086-11090. doi:10.1073/pnas.92.24.11086
89.    Bell A, Grunder L, Sorisky A. Rapamycin inhibits human adipocyte differentiation in primary culture. Obes Res. 2000;8(3):249-254. doi:10.1038/oby.2000.29
90.    Sayed M, Drummond CA, Evans KL, et al. Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation. Stem Cell Res. 2014;13(1):12-23. doi:10.1016/j.scr.2014.04.002
91.    Kim SH, Yu HS, Park HG, et al. Intracerebroventricular administration of ouabain, a Na/K-ATPase inhibitor, activates mTOR signal pathways and protein translation in the rat frontal cortex. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;45:73-82. doi:10.1016/j.pnpbp.2013.04.018

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available