Author(s): Ali M. Ethaeb, Sattar J.J. Al-Shaeli, Tamarah H. Ahmed

Email(s): , ,

DOI: 10.52711/0974-360X.2021.00555   

Address: Ali M. Ethaeb1, Sattar J.J. Al-Shaeli1*, Tamarah H. Ahmed2
1Department of Anatomy and Histology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq.
2Department of Physiology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq.
*Corresponding Author

Published In:   Volume - 14,      Issue - 6,     Year - 2021

Background: Food and water that contained metals and chemicals, contaminated air, extensively used of medicinal substances and cosmetic materials can induce infertility in several ways, and therefore increased numbers of couples not conceive globally. Aim: Investigation the toxic impact of ethidium bromide (EB) on testicular function and the therapeutic role of Nigella sativa (NS) and silver nanoparticles (AgNPs). Materials and methods: A total of 50 male Wistar rats were assigned randomly into five equal groups; control (C) negative and four experimental which respectively received EB only, EB and NS, EB and AgNPs, and EB, NS, and AgNPs for 30 days. Post-experimental period, blood and testicular tissues were collected to determine the antioxidant activity, fertility hormones level, sperm quality and quantity, and histological structure of the testis. Results: In comparison to control, EB group exhibited significant reduction (P<0.05) in antioxidants (catalase (CAT), superoxide dismutase (SOD), and glutathione perioxidase (GPX)), sperm parameters (quantity, morphology, viability and motility), fertility hormones (FSL, LH, and testosterone), and clear histological defects (atrophy in seminiferous tubules, spermatozoa and spermatogonia apoptosis, vacuolization, congestion and thrombus in seminiferous tubules septum, and leydig cells degeneration). However, all these negative effects were significantly reversed in response to supplement of NS, AgNPs, and mixed of them. These including modulate antioxidants activity, sperm’s quantity and quality, fertility hormones, and testicular tissue structure. Conclusion: NS and AgNPs possess interesting properties that have ability to reverse negative impacts of EB, and therefore could be alternative and safe therapeutic agents for infertility.

Cite this article:
Ali M. Ethaeb, Sattar J.J. Al-Shaeli, Tamarah H. Ahmed. Histopathological and Hormonal Evaluation of Interaction effects of Ethidium Bromide, Nigella sativa, and Silver Nanoparticle on Male Rat Fertility. Research Journal of Pharmacy and Technology. 2021; 14(6):3184-0. doi: 10.52711/0974-360X.2021.00555

Ali M. Ethaeb, Sattar J.J. Al-Shaeli, Tamarah H. Ahmed. Histopathological and Hormonal Evaluation of Interaction effects of Ethidium Bromide, Nigella sativa, and Silver Nanoparticle on Male Rat Fertility. Research Journal of Pharmacy and Technology. 2021; 14(6):3184-0. doi: 10.52711/0974-360X.2021.00555   Available on:

1.    Marbat, M.M., abid Ali, M., and Hadi, A.M. The use of Nigella sativa as a single agent in treatment of male infertility. Tikret Journal of Pharmaceutical Sciences 2013; 9(1): 19-29.
2.    Adewoyin, M., Ibrahim, M., Roszaman, R., Isa, M.M., Alewi, N.M., Rafa, A.A., and Anuar, M.N. Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases 2017; 5(1): 1-25.
3.    Santhosh Kumar R, Asha Devi. S. Lead Toxicity on Male Reproductive System and its Mechanism: A Review. Research J. Pharm. and Tech. 2018; 11(3): 1228-1232.
4.    Asadi, N., Bahmani, M., Kheradmand, A., and Rafieian-Kopaei, M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of clinical and diagnostic research: JCDR 2017; 11(5): IE01-IE05.
5.    Guglich, E.A., Wilson, P.J., and White, B.N. (1994). Forensic application of repetitive DNA markers to the species identification of animal tissues. Journal of Forensic Science 1994; 39(2): 353-361.
6.    Cepeda, C., and Santos, Y. Rapid and low-level toxic PCR-based method for routine identification of Flavobacterium psychrophilum. International Microbiology 2000; 3(4): 235-238.
7.    Yarnell, E., and Abascal, K. Nigella sativa: holy herb of the middle East. Alternative and Complementary Therapies 2011; 17(2): 99-105.
8.    Prashant Tiwari, Susmita Jena, Swaroop Satpathy, Pratap Kumar Sahu. Nigella sativa: Phytochemistry, Pharmacology and its Therapeutic Potential. Research J. Pharm. and Tech. 2019; 12(7):3111-3116.
9.    Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of ethnopharmacology 2001; 76(1): 45-48.
10.    Mrityunjoy Majumdar, Arnab Samanta, Amitava Roy. Study of wound healing activity of different formulations of Nigella sativa seed extract. Research J. Pharm. and Tech 2016; 9(12):2097-2105.
11.    Sanjay Basumatary, Nabajeet Changmai. Biological Materials Assisted Synthesis of Silver Nanoparticles and Potential Applications: A Review. Research J. Pharm. and Tech 2018; 11(6): 2681-2694.
12.    Jaafar B. Algburi, Laith Saheb, Anwar Q. A., B. A. Almayahi. UV-VIS and SEM Assessment of Silver Nanoparticles Synthesized using Nd-YAG Laser as antibacterial. Research J. Pharm. and Tech 2018; 11(4): 1588-1591.
13.    S. Bose, H. Shinde, K. Karikalan, P. Lalitha, A. K. A. Mandal. Antibacterial, Antiinflamatory, and Antiproliferative Activity of Silver Nanoparticles Synthesized from Leaf Extract of Azadirachta indica A. Juss. Research J. Pharm. and Tech 2016; 9(12):2422-2426.
14.    Al-Ameedy, T.H., and Omran, R. Antimicrobial Activity of Nigella Sativa Extract Against some Bacterial and Fungal Species. Journal of University of Babylon 2019; 27(1): 277-286.
15.    Al-Kalifawi, E.J., Al-Saadi, T.M., Al-Dulaimi, S.A., and Al-Obodi, E.E. Biosynthesis of silver nanoparticles by using onion (Allium cepa) extract and study antibacterial activity. Journal of Genetic and Environmental Resources Conservation 2015; 3(1): 1-9.
16.    Livak, K.J., and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001; 25(4): 402-408.
17.    Olooto, W.E. Infertility in male; risk factors, causes and management-A review. J Microbiol Biotechnol Res 2012; 2(4): 641-645.
18.    Pizzorno, J. Environmental Toxins and Infertility. Integrative Medicine: A Clinician's Journal 2018; 17(2): 8-11.
19.    Adán, C., Bahamonde, A., Martinez-Arias, A., Fernández-Garcia, M., Pérez-Estrada, L.A., and Malato, S. Solar light assisted photodegradation of ethidium bromide over titania-based catalysts. Catalysis today 2007; 129(1-2): 79-85.
20.    Koppers, A.J., De Iuliis, G.N., Finnie, J.M., McLaughlin, E.A., and Aitken, R.J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. The Journal of Clinical Endocrinology and Metabolism 2008; 93(8): 3199-3207.
21.    Leena Patil, Balaraman R. Protective effect of green tea extract on chemically induced testicular damage in rats. Research J. Pharm. and Tech.2009; 2(4): 837-841.
22.    Mohamed A. El-Nabarawi, Mahmoud H. Teaima, Magdi M. Abdel Hamid, Nabil A. Shoman, Amir Ibrahim Mohamed and Ayman El-Sahar. Formulation, Evaluation and Antioxidant activity of Caffeine Fast Melt Tablets. Research J. Pharm. and Tech 2018; 11(7): 3131-3138.
23.    Agarwal, A., Sharma, R.K., Nallella, K. P., Thomas Jr, A.J., Alvarez, J.G., and Sikka, S.C. Reactive oxygen species as an independent marker of male factor infertility. Fertility and sterility 2006; 86(4): 878-885.
24.    Ménézo, Y.J., Hazout, A., Panteix, G., Robert, F., Rollet, J., Cohen-Bacrie, P., and Benkhalifa, M. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reproductive biomedicine online 2007; 14(4): 418-421.
25.    YV Kishore Reddy, P Sreenivasula Reddy, MR Shivalinga. Protective Effects of Testosterone on Cisplatin Induced Impairment of Spermatogenesis and Steroidogenesis in Rats. Research J. Pharm. and Tech. 2010; 3(2): 535-539.
26.    Kumar, V., Balomajumder, C., and Roy, P. Disruption of LH-induced testosterone biosynthesis in testicular Leydig cells by triclosan: probable mechanism of action. Toxicology 2008; 250(2-3): 124-131.
27.    Knez, J. Endocrine-disrupting chemicals and male reproductive health. Reproductive biomedicine online 2013; 26(5): 440-448.
28.    Aitken, R.J., Smith, T.B., Jobling, M.S., Baker, M.A., and De Iuliis, G.N. Oxidative stress and male reproductive health. Asian journal of andrology 2014; 16(1): 31-38.
29.    Mahdavi, R., Heshmati, J., and Namazi, N. Effects of black seeds (Nigella sativa) on male infertility: A systematic review. Journal of Herbal Medicine 2015; 5(3): 133-139.
30.    Hala, M.A. Protective effect of Nigella sativa, linseed and celery oils against testicular toxicity induced by sodium valproate in male rats. Journal of American Science 2011; 7(5): 687-693.
31.    Kolahdooz, M., Nasri, S., Modarres, S.Z., Kianbakht, S., and Huseini, H.F. Effects of Nigella sativa L. seed oil on abnormal semen quality in infertile men: a randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2014; 21(6): 901-905.
32.    Gökçe, A., Oktar, S., Koc, A., and Yonden, Z. Protective effects of thymoquinone against methotrexate-induced testicular injury. Human and experimental toxicology 2011; 30(8): 897-903.
33.    Tüfek, N.H., Altunkaynak, M.E., Altunkaynak, B.Z., and Kaplan, S. Effects of thymoquinone on testicular structure and sperm production in male obese rats. Systems biology in reproductive medicine 2015; 61(4): 194-204.
34.    Atta, M.S., Almadaly, E.A., El-Far, A.H., Saleh, R.M., Assar, D.H., Al Jaouni, S.K., and Mousa, S.A. Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. International journal of molecular sciences 2017; 18(5): 919-934.
35.    Priyanka B. Khodke, Ritesh R. Popat, Pramod V. Burakale, Pavan P. Chinchole, Vinayak N. Shrikhande. Silver Nanoparticles - A Review. Research J. Pharm. and Tech. 2017; 10(6): 1820-1833.
36.     Zhang, C.X., Qin, X.W., Guo, L.N., Zhang, G.L., Zhang, J.X., and Ren, Y.S. Effect of different Nano-zinc levels in dietary on semen quality, activities of antioxidant enzyme and expression of copper zinc superoxide in epididymis of ram lambs. Scientia Agricultura Sinica 2015; 48(1): 154-164.
37.    Afifi, M., and Abdelazim, A.M. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant ksystem in the brain of diabetic rats. Asian Pacific Journal of Tropical Biomedicine 2015; 5(10): 874-877.
38.    Suliman, Y.O., Ali, D., Alarifi, S., Harrath, A.H., Mansour, L., and Alwasel, S.H. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environmental toxicology 2015; 30(2): 149-160.
39.    Guo, H., Zhang, J., Boudreau, M., Meng, J., Yin, J.J., Liu, J., and Xu, H. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Particle and fibre toxicology 2017; 13(1): 21.
40.    Kannayiram, G., Sandhya, A., Sowmiya, S., Valarmathi, S., and Joseph, D. Anti-Inflammatory Activity of Nigella sativa Silver Nanoparticles: Biochemical Study. Asian J Pharm Clin Res 2019; 12(2): 346-349.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available