Author(s):
Apoorwa Haldiyan, Debarshi Ghosh, Nitin Saluja, Selvakumar Ganeshan, Thakur Gurjeet Singh
Email(s):
gurjeet.singh@chitkara.edu.in
DOI:
10.52711/0974-360X.2021.00501
Address:
Apoorwa Haldiyan1, Debarshi Ghosh1, Nitin Saluja1, Selvakumar Ganeshan1, Thakur Gurjeet Singh2
1Chitkara University, Institute of Engineering and Technology, Chitkara University, Punjab, India.
2Chitkara College of Pharmacy, Chitkara University, Punjab, India.
*Corresponding Author
Published In:
Volume - 14,
Issue - 5,
Year - 2021
ABSTRACT:
A phenomenon that transiently increases the permeability of the cells is known as electroporation. It is the basis for number of the applications in biomedical domains. It is essential to consider requirement of high precision and the overall size of electroporator. The recent decades have seen the development of solid-state power electronic modules. The modules enable generation of high voltage millisecond and nano-second pulses with options to reduce the overall size of the equipment. The selective modules are verified with experimental models and available for commercial usage. While the other modules are still undergoing optimization processes. The generator generates pulses for varying performances. Hence, this paper presents knowledge for different nanosecond and millisecond pulse generating circuits for electroporation purposes. The performance parameters like the width of the pulse, its amplitude are compared for different circuit topologies. The performance analysis of different topologies and their impact on the performance of the electroporation at the cell biology level are considered in this paper.
Cite this article:
. Apoorwa Haldiyan, Debarshi Ghosh, Nitin Saluja, Selvakumar Ganeshan, Thakur Gurjeet SinghComparison of Nano-second and Millisecond Pulse Generators for Biological applications of Electroporation. Research Journal of Pharmacy and Technology. 2021; 14(5):2843-1. doi: 10.52711/0974-360X.2021.00501
Cite(Electronic):
. Apoorwa Haldiyan, Debarshi Ghosh, Nitin Saluja, Selvakumar Ganeshan, Thakur Gurjeet SinghComparison of Nano-second and Millisecond Pulse Generators for Biological applications of Electroporation. Research Journal of Pharmacy and Technology. 2021; 14(5):2843-1. doi: 10.52711/0974-360X.2021.00501 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-5-85
REFERENCES:
1. Sarnago H, Sieni E, Lopez-Alonso B, Carrctcro C, Burdio JM, and Lucia O. An inter-disciplinary approach to teaching biomedical electronics with an electroporation-applied example. IEEE 27th International Symposium on Industrial Electronics (ISIE). 2018: 901-905.
2. Kushwaha A, Jaiswal J, Singh P, Rathore N, Dhruw JP, Sahu I, Singh C, Sahu KK, Agrawal M, Tripathi DK, Alexander A. An exhaustive review based on the formulation and evaluation methods behind the development of transdermal drug delivery systems. Research Journal of Pharmacy and Technology. 2017;10(5): 1531-8
3. Kassakian JG and Jahns TM. Evolving and emerging applications of power electronics in systems. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2013; 1(2): 47-58.
4. Sajid Ali, Maryam Shabbir, Nabeel Shahid. The Structure of Skin and Transdermal Drug Delivery System- A Review. Research J. Pharm. and Tech. 8(2): Feb. 2015; Page 103-109
5. Ganesan V, Vengadesh M, Sudhamani T, Chandrasekaran N, Senthil SP. Formulation and Evaluation of Iontophoretic Transdermal Delivery of Atorvastatin Calcium. Research Journal of Pharmacy and Technology. 2011;4(5): 730-4
6. Monika B, Amit R, Sanjib B, Alisha B, Mihir P, Dhanushram T. Transdermal drug delivery system with formulation and evaluation aspects: overview. Research Journal of Pharmacy and Technology. 2012;5(9): 1168-76
7. Teissie J, Golzio M and Rols MP. Mechansims of cell membrane electropermeabilization: A minireview of our present knowledge. Biochimica et Biophysica Acta (BBA)- General Subjects. 2005;1724(3): 270-280.
8. Rebersek M and Miklavcic D. Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika. 2011; 52(1): 12-19.
9. Kotnik T, Kramar P, Pucihar P, Miklavcic D and Tarek M. Cell membarne electroporation-part 1: The Phenomenon. IEEE Electrical Insulation Magazine. 2012; 28(5): 14-23.
10. Sweta S. Solanki, Karan B. Patel, Jalpa G. Patel, Manish P. Patel, Jayvadan K. Patel. Transdermal Drug Delivery Systems: A Review. Research J. Pharm. and Tech. 2012; 5(6): 757-763.
11. Rakesh K Sindhu, Mansi Chitkara, Gagandeep Kaur, Preeti Jaiswal, Ashutosh Kalra, Inderbir Singh, Pornsak Sriamornsak. Skin Penetration Enhancer’s in Transdermal Drug Delivery Systems. Research J. Pharm. and Tech. 2017; 10(6): 1809-1815.
12. Sindhu RK, Chitkara M, Kaur G, Jaiswal P, Kalra A, Singh I, Sriamornsak P. Skin penetration enhancer's in transdermal drug delivery systems. Research Journal of Pharmacy and Technology. 2017;10(6): 1809-15
13. Sersa G, Miklavcic D, Cemazar Z, Rudolf Z, Pucihar G and Snoj M. Electrochemotherapy in treatment of tumours. European Journal of Surgical Oncology (EJSO). 2008; 34(2): 232-240.
14. Saraswathi Gopal, Sosa George. Electrochemotherapy for Head and Neck Cancers-A Comprehensive Review. Research J. Pharm. and Tech. 2019; 12(10): 5047-5050.
15. Lee EW, Thai S and Kee ST. Irreversible electroporation: A novel image-guided cancer therapy. Gut and Liver. 2010; 4(1): 99-104.
16. Morales-de La Pena M, Elez-Martinez P and Martin-Belloso O. Food preservation by pulsed electric fields: An engineering perspective. Food Engineering Reviews. 2011; 3(2): 94-107.
17. Raso-Pueyo J and Heinz V. Pulsed electric fieds technology for the food industry: Fundamentals and applications. Springer Science and Buisness Media. 2010.
18. Wu TF, Tseng SY and Hung JC. Generation of pulsed electric fields for processing microbes. IEEE Transactions on Plasma Science. 2004; 32(4): 1551-1562.
19. Tseng SY, Wu TF and Wu MW. Bipolar narrow-pulse generator with energy-recovery feature for food sterilization. IEEE Transactions on Industrial Electronics. 2008: 55(1); 123-132.
20. Rezanejad M, Sheikholeslami A and Adabi J. High-voltage pulsed power supply to generate wide pulses combined with narrow pulses. IEEE Transactions on Plasma Science. 2014; 42(7): 1894-1901.
21. Jayaram SH. Sterilization of liquid foods by pulsed electric fields. IEEE Electrical Insulation Magazine. 2000; 16(6): 17-25.
22. Moonesan MS and Jayaram SH. Effect of pulse width on medium temperature rise and microbial inactivation under pulsed electric field treatment. IEEE Transactions on Industry Applications. 2013; 49(4): 1767-1772.
23. Elgenedy MA, Darwish A, Ahmed S and Williams BW. A transition arm modular multilevel universal pulse-waveform generator for electroporation applications. IEEE Transactions on Power Electronics. 2017; 32(12): 8979-8991.
24. Pavlin M, Kanduser M, Rebersek M, Pucihar G, Hart FX, Magjareviccaute R and Miklavcic D. Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal. 2005; 88(6): 4378-4390.
25. Kanduser M, Miklavcic D, Pavlin M. Mechanisms involved in gene electrotransfer using high-and low-voltage pulses—an in vitro study. Bioelectrochemistry. 2009; 74(2): 265-71.
26. Danfelter M, Engstrom P, Persson BR, Salford LG. Effect of high voltage pulses on survival of Chinese hamster V79 lung fibroblast cells. Bioelectrochemistry and Bioenergetics. 1998; 47(1): 97-101.
27. Rebersek M, Kanduser M, Miklavcic D. Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells. Radiology and oncology. 2011; 45(3): 204-8.
28. Tokmakci M. A high-voltage pulse generation instrument for electrochemotherapy method. Journal of medical systems. 2006; 30(3): 145-51.
29. Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Transactions on Biomedical Engineering. 2006; 53(7): 1409-15.
30. Rathod NJ, Raval JA, Shah NP. Thermal ablation for transdermal drug delivery. Research Journal of Pharmacy and Technology. 2010; 3(4): 1004-10.
31. Ghosh D, Saluja N, Singh TG. A critical analysis of electroporation in medical technology. International Journal Of Pharmaceutical Sciences and Research. 2019; 10(1): 23-8.
32. Wu Y, Liu K, Qiu J, Liu X, Xiao H. Repetitive and high voltage Marx generator using solid-state devices. IEEE Transactions on Dielectrics and Electrical Insulation.2007; 14(4) :937-40.
33. Rodamporn S, Beeby S, Harris N, Brown A, Chad J. Design and construction of a programmable electroporation system for biological applications.2007: 234-238.
34. Pokryvailo A, Carp C, Scapellati C. A high-power high-voltage power supply for long-pulse applications. IEEE transactions on plasma science.2010; 38(10): 2604-10.
35. Elserougi A, Massoud A, Ahmed S. Conceptual study of a bipolar modular high voltage pulse generator with sequential charging. IEEE Transactions on Dielectrics and Electrical Insulation. 2016; 23(6): 3450-7.
36. Elserougi AA, Massoud AM, Ahmed S. A unipolar/bipolar high-voltage pulse generator based on positive and negative buck–boost DC–DC converters operating in discontinuous conduction mode. IEEE Transactions on Industrial Electronics. 2017; 64(7): 5368-79.
37. Kranjc M, Rebersek M, Miklavcic D. Numerical simulations aided development of nanosecond pulse electroporators. In2012 6th European Conference on Antennas and Propagation (EUCAP). 2012:344-347.
38. Kolb JF, Kono S, Schoenbach KH. Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics. 2006; 27(3): 172-87.
39. Kim JH, Lee SC, Lee BK, Shenderey SV, Kim JS, Rim GH. A high-voltage bi-polar pulse generator a using push-pull inverter. 29th Annual Conference of the IEEE Industrial Electronics Society. 2003:102-106.
40. Chaney A, Sundararajan R. Simple MOSFET-based high-voltage nanosecond pulse circuit. IEEE Transactions on Plasma science. 2004; 32(5): 1919-24.
41. Shao T, Zhang D, Yu Y, Zhang C, Wang J, Yan P, Zhou Y. A compact repetitive unipolar nanosecond-pulse generator for dielectric barrier discharge application. IEEE Transactions on Plasma Science. 2010; 38(7): 1651-5.
42. Merla C, El Amari S, Kenaan M, Liberti M, Apollonio F, Arnaud-Cormos D, Couderc V, Leveque P. A 10-$\Omega $ High-Voltage Nanosecond Pulse Generator. IEEE transactions on microwave theory and techniques. 2010; 58(12): 4079-85.
43. El Amari S, Kenaan M, Merla C, Vergne B, Arnaud-Cormos D, Leveque P, Couderc V. Kilovolt, nanosecond, and picosecond electric pulse shaping by using optoelectronic switching. IEEE Photonics Technology Letters. 2010; 22(21): 1577-9.
44. Jiang C, Xia S, Wang Q, He J. A compact repetitive nanosecond pulsed power generator based on transmission line transformer. IEEE Transactions on Dielectrics and Electrical Insulation. 2011; 18(4): 1194-8.
45. Romeo S, D'Avino C, Zeni O, Zeni L. A Blumlein-type, nanosecond pulse generator with interchangeable transmission lines for bioelectrical applications. IEEE Transactions on Dielectrics and Electrical Insulation. 2013; 20(4): 1224-30.
46. Lan X, Long M, Zi-jie X, Qin X, De-qing Z, Zi-kang Y. A novel generator for high-voltage bipolar square pulses with applications in sterilization of microorganism. IEEE Transactions on Dielectrics and Electrical Insulation. 2015; 22(4): 1887-95.
47. Mi Y, Wan J, Bian C, Zhang Y, Yao C, Li C. A multiparameter adjustable, portable high-voltage nanosecond pulse generator based on stacked Blumlein multilayered PCB strip transmission line. IEEE Transactions on Plasma Science. 2016 ; 44(10): 2022-9.
48. Mi Y, Zhang Y, Wan J, Yao C, Li C. Nanosecond pulse generator based on an unbalanced blumlein-type multilayered microstrip transmission line and solid-state switches. IEEE Transactions on Plasma Science. 2016; 44(5): 795-802.
49. Liu H, Yao C, Mi Y, Li C, Zhao Y, Lv Y. Multi-parameter analysis in single-cell electroporation based on the finite element model.InIEEE International Power Modulator and High Voltage Conference (IPMHVC). 2016: 364-370.
50. Novickij V, Grainys A, Butkus P, Tolvaisienė S, Svedienė J, Paskevicius A, Novickij J. High-frequency submicrosecond electroporator. Biotechnology and Biotechnological Equipment. 2016; 30(3): 607-13.
51. Butkus P, Kurcevskis S, Tolvaisienė S, Grainys A. Computer model of the high frequency up to 30 KV/Cm electric field generator. In 5th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE). 2017:1-3.
52. Pirc E, Miklavcic D, Reberšek M. Nanosecond Pulse Electroporator With Silicon Carbide mosfet s: Development and Evaluation. IEEE Transactions on Biomedical Engineering. 2019; 66(12): 3526-33.
53. Butkus P, Tolvaisienė S, Kurcevskis S. Validation of a SPICE Model for High Frequency Electroporation Systems. Electronics. 2019; 8(6): 710.
54. Cronje TF, Gaynor PT. High voltage and frequency bipolar pulse generator design for electroporation-based cancer therapy. In Australasian Universities Power Engineering Conference (AUPEC). 2013: 1-7.
55. Bullmann T, Arendt T, Frey U, Hanashima C. A transportable, inexpensive electroporator for in utero electroporation. Development, growth and differentiation. 2015; 57(5): 369-77.
56. Shagoshtasbi H, Riaz K, Lee YK, Tse K. Smartphone-based electroporator system for micro/nano electroporation chips. In IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2015: 72-75.
57. Novickij VN, Stankevic V, Grainys A, Novickij J, Tolvaisiene S. Microsecond electroporator optimization for parasitic load handling and damping. Elektronika ir Elektrotechnika. 2015; 21(6): 40-3.
58. Ryan HA, Hirakawa S, Yang E, Zhou C, Xiao S. High-Voltage, Multiphasic, nanosecond pulses to modulate cellular responses. IEEE Transactions on biomedical circuits and systems. 2018;12(2):338-50.
59. Mi Y, Bian C, Li P, Yao C, Li C. A modular generator of nanosecond pulses with adjustable polarity and high repetition rate. IEEE Transactions on Power Electronics. 2018;33(12):10654-62.