Author(s): Diana Holidah, Ika Puspita Dewi, Fransiska Maria Christianty, Noer Sidqi Muhammadiy, Nur Huda

Email(s): diana.farmasi@unej.ac.id

DOI: 10.52711/0974-360X.2021.00494   

Address: Diana Holidah*, Ika Puspita Dewi, Fransiska Maria Christianty, Noer Sidqi Muhammadiy, Nur Huda
Department of Pharmacy Clinic and Community, Faculty of Pharmacy, University of Jember.
*Corresponding Author

Published In:   Volume - 14,      Issue - 5,     Year - 2021


ABSTRACT:
Diabetes mellitus is a syndrome due to disorders of carbohydrate, lipid, and protein metabolism due to decreased insulin secretion or reduced insulin sensitivity. The number of people with diabetes mellitus is increasing every year. However, diabetes mellitus is a major cause of cardiovascular disease, blindness, kidney failure, and amputation due to gangrene. Patients with diabetes mellitus have a possibility of 2-3 times higher cardiovascular disease than non diabetic. Sappan wood containing brazilin that have antioxidant activity and had a potential activity to lower the incidence of type 2 diabetes mellitus. Objective of this research was to determine the activity of secang wood extract as an antidiabetic and antidyslipidemic on diabetic rat. Diabetic rat induced by alloxan and given extract once daily for 14 days. At 15th day, blood glucose level, lipid profile was determine, pancreas was harvested and processed to hystopathological examination. Secang wood extract decreased blood glucose, cholesterol, triglyceride, and LDL level, increase HDL level, and repair the histology of pancreas on diabetic rat after 14 days treatment. Based on the result, secang wood extract had antidiabetic and antidyslipidemic activity on diabetic rat.


Cite this article:
Diana Holidah, Ika Puspita Dewi, Fransiska Maria Christianty, Noer Sidqi Muhammadiy, Nur Huda. Antidiabetic and Antidyslipidemic activity of Secang, (Caesalpinia sappan L.) Wood extract on Diabetic Rat. Research Journal of Pharmacy and Technology. 2021; 14(5):2801-6. doi: 10.52711/0974-360X.2021.00494

Cite(Electronic):
Diana Holidah, Ika Puspita Dewi, Fransiska Maria Christianty, Noer Sidqi Muhammadiy, Nur Huda. Antidiabetic and Antidyslipidemic activity of Secang, (Caesalpinia sappan L.) Wood extract on Diabetic Rat. Research Journal of Pharmacy and Technology. 2021; 14(5):2801-6. doi: 10.52711/0974-360X.2021.00494   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-5-78


REFERENCES:
1.    Hall, J. E. 2016. Guyton and Hall Textbook of Medical Physiology. 13th Ed. Philadelphia: Elsevier. 2016.
2.    ADA. 2018. Standards of medical care in diabetes. Diabetes Care. 2018. 41(1):S1–S159
3.    International Diabetes Federation. Diabetes Atlas. 8th Ed. International Diabetes Federation. 2017.
4.    Kementerian Kesehatan Republik Indonesia. Hasil Utama Riskesdas 2018. Jakarta: Kementerian Kesehatan Rebublik Indonesia. 2018.
5.    Robertson, R. P., J. et al.. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003; 49:883–888.
6.    Davis, W. A., M. W. et al. An Australian cardiovascular risk equation for type 2 diabetes: the Fremantle diabetes study. Internal Medicine Journal. 2010. 40(4):286–292.
7.    Leon, B. M. dan T. M. Maddox. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World Journal of Diabetes. 2015. 6(13):1246.
8.    Karam, I., Y. J. et al. Hyperlipidemia background and progress. SM Atherosclerosis Journal. 2017. 1(1):1–8.
9.    Qaid, M. M. dan M. M. Abdelrahman. Role of insulin and other related hormones in energy metabolism-a review. Cogent Food & Agriculture.2016. 2(1):1–18.
10.    Kraemer, F. B., W. Shen, A. Hormone-sensitive lipase : control of intracellular tri- (di-) acylglycerol and cholesteryl ester hydrolysis. 43. 2002.
11.    Larsson, M., E. et al. Apolipoproteins c-i and c-iii inhibit lipoprotein. 2013.
12.    Mooradian, A. D. Dyslipidemia in type 2 diabetes mellitus. Nature Clinical Practice Endocrinology & Metabolism. 2009. 5(3):150–159.
13.    Bommer, C., E. et al.. The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. The Lancet Diabetes and Endocrinology. 2017. 5(6):423–430.
14.    Rusdi, U. D., W. Widowati, dan E. T. Marlina. Efek ekstrak kayu secang , vitamin e dan dan vitamin c terhadap status antioksidan total (sat) pada mencit yang terpapar aflatoksin. Media Kedokteran Hewan. 2002. 21(2):66–68.
15.    Zhong, X., B. Wu, Y. J. Pan, dan S. Zheng. Stem cell based glioblastoma gene therapy. Neoplasma.2012. 59(6):622–630.
16.    Meda, A., C. E. et al. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry. 2005. 91(3):571–577.
17.    Holidah, D., Christianty, F.M., Green Tea Extract Effect on Blood Glucose Level and Liver Histopathology in Diabetic Mice, Presiding 1st ICMHS, 2016. ISBN 978-602-74798-8-3
18.    Katzung, B. G. dan A. J. Trevor. Basic and Clinical Pharmacology. 13th ed. 2018. San Fransisco: Mc Graw Hill Education.
19.    Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008. 51(2):216–226.
20.    Rohilla, A. dan S. Ali. Alloxan induced diabetes : mechanisms and effects. International Journal of Research in Pharmaceutical and Biomedical Science. 2012. 3(2):819–823.
21.    Soltesova, D. dan I. Herichova. On the mechanisms of diabetogenic effects of alloxan and streptozotocin on the mechanisms of diabetogenic effects of alloxan and streptozotocin. Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Slovak Republic. 2014.
22.    Nugroho, A. E. Animal models of diabetes mellitus : pathology and mechanism of some diabetogenic. Biodiverse, Journal of Biological Diversity. 2006. 7(4):378–382.
23.    Kumar, V., A. K. Abbas, dan J. C. Aster. Robbins Basic Pathology. 9th ed. 2013. Philadelphia: Elsevier.
24.    Brereton, M. F., M. et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications. 2014. 5:1–11.
25.    Bouwens, L. U. C. dan I. Rooman. Regulation of pancreatic beta-cell mass. American Physiological Society. 2005. 85(68):1255–1270.
26.    Widowati, W. Uji fitokimia dan potensi antioksidan ekstrak etanol kayu secang (caesalpinia sappan l.). Jurnal Kedokteran Maranatha. 2011. 11(1):23–31.
27.    Barbosa, D. S. Green tea polyphenolic compounds and human health. 2007. 2:407–408.
28.    Evans, J. L., I. D. et al. Perspectives in diabetes. Diabetes. 2003. 52:1–8.
29.    Dheer, R. dan P. Bhatnagar. A study of the antidiabetic activity of barleria prionitis linn. Indian Journal Pharmacology. 2010. 42(2):70–73.
30.    Brahmachari, G. Bio-flavonoids with promising anti- diabetic potentials : a critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry,. 2011. 187–212.
31.    Nirmal, N. P., M. S. et al. Brazil in from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pacific Journal of Tropical Medicine. 2015. 8(6):421–430.
32.    Febriyenti, N. et al. Karakterisasi dan studi aktivitas antioksidan dari ekstrak etanol secang (Caesalpinia sappan). Jurnal Sains Farmasi & Klinis. 2018. 5(1):23–27.
33.    You, E. J., L. Y. et al. Effects of Brazilin on the production of fructose-2,6-bisphosphate in rat hepatocytes. Journal of Ethnopharmacology. 2005. 102(1):53– 57.
34.    Murray, R. K., D. K. Granner, dan V. W. Rodwell. Harper’s Illustrated Biochemistry. 28th Ed. Mc Graw Hill, NY. 2009.
35.    Atangwho, I. J., P. E. et al. Extract of Vernonia amygdalina del . (african bitter leaf) can reverse pancreatic cellular lesion after alloxan damage in the rat. Australian Journal of Basic and Applied Sciences. 2010. 4(5):711–716.
36.    Meliani, N., M. et al. Hypoglycaemic effect of berberis vulgaris l . in normal and streptozotocin-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine. 2011. 468–471.
37.    Zhang, X., Y. Anti-hyperglycemic and anti-hyperlipidemia effects of the alkaloid-rich extract from barks of litsea glutinosa in ob/ob mice. Scientific Reports. 2018. 8(1):1–10.
38.    Alberto, J., M. et al. Antihyperglycemic effects of Cajanus cajan L. (pigeon pea ) ethanolic extract on the blood glucose levels of icr mice (mus musculus l.). National Journal of Physiology, Pharmacy and Pharmacology. 2017. 7(8):860–864
39.    Kato, C. G., G. D. A. et al. Inhibition of alpha-amylases by condensed and hydrolysable tannins : focus on kinetics and hypoglycemic actions. Enzyme Research. 2017.
40.    Borzym-kluczyk, M. dan J. Nazaruk. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochemistry Reviews. 2015. 14:675–690.
41.    Zeka, K., K. et al. Flavonoids and their metabolites : prevention in cardiovascular diseases and diabetes. Diseases. 2017. 5(19):1–18.
42.    Prince, P. S. M. dan N. K. Kannan. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. Journal of Pharmacy and Pharmacology. 2006. 58(10):1373–1383.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available