Author(s):
Thilagar Gobinath, Sasikumar Thamizhselvan, Arumugam Ramakrishnan, Samuthirapandian Ravichandran
Email(s):
Email ID Not Available
DOI:
10.52711/0974-360X.2021.00486
Address:
Thilagar Gobinath1, Sasikumar Thamizhselvan1, Arumugam Ramakrishnan3, Samuthirapandian Ravichandran1,2*
1Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India.
2Government Thirumagal Mills College, Gudiyatham, Tamil Nadu, India.
3Department of Biochemistry, Karpagam Academy of Higher Education, Deemed to be University, India.
*Corresponding Author
Published In:
Volume - 14,
Issue - 5,
Year - 2021
ABSTRACT:
Chitosan is extracted from Perna viridis as the staring source via the cycle of chitin deacetylation, which is conducted at 90°C for 6 hours using 40% NaOH. Physiochemical properties such as yield (18%), ash content (0.626%), moisture content (2.9%), and solubility, degree of deacetylation (55), fat binding capability (209%) and water binding ability (254 %) revealed that P.viridis is an important alternative source of chitosan. Fourier transforms infrared spectroscopy (FTIR) analysis showed the characteristic peaks of OH at 3400cm-1 and amine at 1660cm-1, the X-ray diffraction (XRD) analysis suggested two critical characteristic peaks at 18° and 34° at (2?). Scanning electron microscope (SEM) was used to evaluate the surface morphology of isolated chitosan. Thermogravimetric analysis (TG/DTA) was also used to describe the thermal stability of P.viridis chitosan. The procoagulant capacity, plasma recalcification time assays and minimal bactericidal activity verified the hemocompatibility and antibacterial activity of the preparation of chitosan.
Cite this article:
Thilagar Gobinath, Sasikumar Thamizhselvan, Arumugam Ramakrishnan, Samuthirapandian Ravichandran. Preparation and Characterization of Chitosan from Perna viridis (Linnaeus, 1758) shell waste as raw material. Research Journal of Pharmacy and Technology. 2021; 14(5):2757-2. doi: 10.52711/0974-360X.2021.00486
Cite(Electronic):
Thilagar Gobinath, Sasikumar Thamizhselvan, Arumugam Ramakrishnan, Samuthirapandian Ravichandran. Preparation and Characterization of Chitosan from Perna viridis (Linnaeus, 1758) shell waste as raw material. Research Journal of Pharmacy and Technology. 2021; 14(5):2757-2. doi: 10.52711/0974-360X.2021.00486 Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-5-70
REFERENCE:
1 J. R. Cadano et al., “A comparative study on the raw chitin and chitosan yields of common bio-waste from Philippine Seafood,” 2020.
2 A. Jadhav, “Undefining Small-Scale Fisheries in India: Challenging Simplifications and Highlighting Diversity and Value,” Springer, Cham, 2018, pp. 147–173.
3 K. H. Mo, U. J. Alengaram, M. Z. Jumaat, S. C. Lee, W. I. Goh, and C. W. Yuen, “Recycling of seashell waste in concrete: A review,” Construction and Building Materials, vol. 162. Elsevier Ltd, pp. 751–764, Feb. 2018, doi: 10.1016/j.conbuildmat.2017.12.009.
4 S. Newman, E. Watkins, A. Farmer, P. Ten Brink, and J. P. Schweitzer, “The economics of marine litter,” in Marine Anthropogenic Litter, Springer International Publishing, 2015, pp. 367–394.
5 M. Yadav, P. Goswami, K. Paritosh, M. Kumar, N. Pareek, and V. Vivekanand, “Seafood waste: a source for preparation of commercially employable chitin/chitosan materials,” Bioresources and Bioprocessing, vol. 6, no. 1. Springer, pp. 1–20, Dec. 2019, doi: 10.1186/s40643-019-0243-y.
6 J. P. Martínez, M. P. Falomir, and D. Gozalbo, “Chitin: A Structural Biopolysaccharide with Multiple Applications,” in eLS, Chichester, UK: John Wiley & Sons, Ltd, 2014.
7 D. Elieh-Ali-Komi and M. R. Hamblin, “Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials.,” Int. J. Adv. Res., vol. 4, no. 3, pp. 411–427, Mar. 2016.
8 I. A. Hoell, G. Vaaje-Kolstad, and V. G. H. Eijsink, “Biotechnology and Genetic Engineering Reviews Structure and function of enzymes acting on chitin and chitosan Structure and function of enzymes acting on chitin and chitosan,” Biotechnol. Genet. Eng. Rev., vol. 27, pp. 331–366, 2010, doi: 10.1080/02648725.2010.10648156.
9 S. S. Silva, J. F. Mano, and R. L. Reis, “Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications,” Green Chemistry, vol. 19, no. 5. Royal Society of Chemistry, pp. 1208–1220, Mar. 2017, doi: 10.1039/c6gc02827f.
10 A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, and K. de la Caba, “Chitosan as a bioactive polymer: Processing, properties and applications,” International Journal of Biological Macromolecules, vol. 105. Elsevier B.V., pp. 1358–1368, Dec. 2017, doi: 10.1016/j.ijbiomac.2017.07.087.
11 N. W. Sangwaranatee, K. Teanchai, S. Kongsriprapan, and W. Siriprom, “Characterization and analyzation of chitosan powder from Perna Viridis shell,” Mater. Today Proc., vol. 5, no. 6, pp. 13922–13925, 2018, doi: 10.1016/j.matpr.2018.02.041.
12 K. Mohan et al., “Extraction and characterization of chitin from sea snail Conus inscriptus (Reeve, 1843),” Int. J. Biol. Macromol., vol. 126, pp. 555–560, 2019, doi: 10.1016/j.ijbiomac.2018.12.241.
13 V. Mohanasrinivasan et al., “Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste,” 3 Biotech, vol. 4, no. 2, pp. 167–175, Apr. 2014, doi: 10.1007/s13205-013-0140-6.
14 Y. I. Cho, H. K. No, and S. P. Meyers, “Physicochemical Characteristics and Functional Properties of Various Commercial Chitin and Chitosan Products,” J. Agric. Food Chem., vol. 46, no. 9, pp. 3839–3843, 1998, doi: 10.1021/jf971047f.
15 Z. Hu et al., “Investigation of the effects of molecular parameters on the hemostatic properties of chitosan,” Molecules, vol. 23, no. 12, pp. 1–14, 2018, doi: 10.3390/molecules23123147.
16 H. Khalili, R. Soltani, S. Negahban, A. Abdollahi, and K. Gholami, “Reliability of disk diffusion test results for the antimicrobial susceptibility testing of nosocomial gram-positive microorganisms: Is e-test method better?,” Iran. J. Pharm. Res., vol. 11, no. 2, pp. 559–563, May 2012, doi: 10.22037/ijpr.2012.1094.
17 S. O. Majekodunmi, E. O. Olorunsola, and C. C. Uzoaganobi, “Comparative Physicochemical Characterization of Chitosan from Shells of Two Bivalved Mollusks from Two Different Continents,” Am. J. Polym. Sci., vol. 7, no. 1, pp. 15–22, 2017, doi: 10.5923/j.ajps.20170701.03.
18 P. Ramasamy, N. Subhapradha, V. Shanmugam, and A. Shanmugam, “Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885),” Int. J. Biol. Macromol., vol. 64, no. July 2019, pp. 202–212, 2014, doi: 10.1016/j.ijbiomac.2013.12.008.
19 A. Singh, S. Benjakul, and T. Prodpran, “Ultrasound-Assisted Extraction of Chitosan from Squid Pen: Molecular Characterization and Fat Binding Capacity,” J. Food Sci., vol. 84, no. 2, pp. 224–234, Feb. 2019, doi: 10.1111/1750-3841.14439.
20 M. Syifa Yusharani, I. Ulfin, and Y. Lailun Ni, “Synthesis of water-soluble chitosan from squid pens waste as raw material for capsule shell: temperature deacetylation and reaction time Recent citations Doxorubicin-Loaded Squid Pen Plaster: A Natural Drug Delivery System for Cancer Cells Giulia Magnabos,” doi: 10.1088/1757-899X/509/1/012070.
21 I. Younes and M. Rinaudo, “Chitin and chitosan preparation from marine sources. Structure, properties and applications,” Marine Drugs, vol. 13, no. 3. MDPI AG, pp. 1133–1174, Mar. 2015, doi: 10.3390/md13031133.
22 R. S. C. M. D. Q. Antonino et al., “Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone),” Mar. Drugs, vol. 15, no. 5, pp. 1–12, 2017, doi: 10.3390/md15050141.
23 S. Kumari and P. K. Rath, “Extraction and Characterization of Chitin and Chitosan from (Labeo rohit) Fish Scales,” Procedia Mater. Sci., vol. 6, pp. 482–489, Jan. 2014, doi: 10.1016/j.mspro.2014.07.062.
24 N. Boudouaia, Z. Bengharez, and S. Jellali, “Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: application for Eriochrome black T removal from aqueous solutions,” Appl. Water Sci., vol. 9, no. 4, pp. 1–12, Jun. 2019, doi: 10.1007/s13201-019-0967-z.
25 M. T. Yen, Y. H. Tseng, R. C. Li, and J. L. Mau, “Antioxidant properties of fungal chitosan from shiitake stipes,” LWT - Food Sci. Technol., vol. 40, no. 2, pp. 255–261, Mar. 2007, doi: 10.1016/j.lwt.2005.08.006.
26 M. T. Yen, J. H. Yang, and J. L. Mau, “Physicochemical characterization of chitin and chitosan from crab shells,” Carbohydr. Polym., vol. 75, no. 1, pp. 15–21, Jan. 2009, doi: 10.1016/j.carbpol.2008.06.006.
27 L. S. Guinesi and É. T. G. Cavalheiro, “The use of DSC curves to determine the acetylation degree of chitin/chitosan samples,” Thermochim. Acta, vol. 444, no. 2, pp. 128–133, May 2006, doi: 10.1016/j.tca.2006.03.003.
28 M. Faisal, A. Elhussieny, K. A. Ali, I. Samy, and N. M. Everitt, “Extraction of degradable bio polymer materials from shrimp shell wastes by two different methods,” doi: 10.1088/1757-899X/464/1/012004.
29 S. Kumari, S. H. Kumar Annamareddy, S. Abanti, and P. Kumar Rath, “Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells,” Int. J. Biol. Macromol., vol. 104, pp. 1697–1705, Nov. 2017, doi: 10.1016/j.ijbiomac.2017.04.119.
30 L. W. Chan, C. H. Kim, X. Wang, S. H. Pun, N. J. White, and T. H. Kim, “PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage,” Acta Biomater., vol. 31, pp. 178–185, Feb. 2016, doi: 10.1016/j.actbio.2015.11.017.
31 D. Raafat and H. G. Sahl, “Chitosan and its antimicrobial potential - A critical literature survey,” Microbial Biotechnology, vol. 2, no. 2 SPEC. ISS. Wiley-Blackwell, pp. 186–201, Mar. 2009, doi: 10.1111/j.1751-7915.2008.00080.x.
32 A. Shanmugam, K. Kathiresan, and L. Nayak, “Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885),” Biotechnol. Reports, vol. 9, pp. 25–30, Mar. 2016, doi: 10.1016/j.btre.2015.10.007.