Author(s): Venkat Abhiram Earny, Venkatesh Kamath, Anuraag Muralidharan, Vandana K E, Kanav Khera

Email(s): venkatesh.kamath@manipal.edu

DOI: 10.52711/0974-360X.2021.00414   

Address: Venkat Abhiram Earny1, Venkatesh Kamath1*, Anuraag Muralidharan1, Vandana K E2, Kanav Khera3
1Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal – 576104.
2Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal – 576104.
3Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal – 576104.
*Corresponding Author

Published In:   Volume - 14,      Issue - 4,     Year - 2021


ABSTRACT:
The steady increase in the emergence of multidrug-resistant bacteria amongst medical centers, environment, animals, and food is of major concern for health care professionals. Most of the currently used mainline antibacterial drugs were discovered during the golden era of antibiotic discovery (1950-60). During this period, many natural, semi-synthetic, and synthetic molecules were screened for their antimicrobial potential against a spectrum of clinical pathogens. Nevertheless, there was a gap of forty long years until the release of a newer class of antibiotics in the market. It is very vital to develop an integrated approach to combat antimicrobial resistance. There has been a paradigm shift in the field of marine drug discovery in the last two decades. Bioactive metabolites derived from the marine ecosystem are known to exhibit a wide array of pharmacological activity than the terrestrial source. Among all marine organisms, secondary metabolites derived from microbes are the most underexplored natural source. Screening of marine microbes for various antimicrobial molecules has become a noteworthy trend in marine drug discovery and provides a ray of hope for combating antimicrobial resistance.


Cite this article:
Venkat Abhiram Earny, Venkatesh Kamath, Anuraag Muralidharan, Vandana K E, Kanav Khera. Marine Microbial Metabolites: A new wave of drugs for Combating Antimicrobial Resistance. Research Journal of Pharmacy and Technology. 2021; 14(4):2348-2. doi: 10.52711/0974-360X.2021.00414

Cite(Electronic):
Venkat Abhiram Earny, Venkatesh Kamath, Anuraag Muralidharan, Vandana K E, Kanav Khera. Marine Microbial Metabolites: A new wave of drugs for Combating Antimicrobial Resistance. Research Journal of Pharmacy and Technology. 2021; 14(4):2348-2. doi: 10.52711/0974-360X.2021.00414   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-4-90


REFERENCES:
1. Poole, K. (2004). Resistance to β-lactam antibiotics. Cellular and Molecular Life Sciences, 61(17).  https://doi.org/10.1007/s00018-004-4060-9. 
2. Frost, L. S., Leplae, R., Summers, A. O., and Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology, 3(9), 722–732. https://doi.org/10.1038/nrmicro1235.
3. Niell OJ (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth and nations. https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
4. Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C., and Mylonakis, E. (2016). Fecal Colonization with Extended-spectrum Beta-lactamase producing Enterobacteriaceae and Risk Factors Among Healthy Individuals: A Systematic Review and Metaanalysis. Clinical Infectious Diseases, 63(3), 310–318.https://doi.org/10.1093/cid/ciw283.
5. Luepke, K. H., Suda, K. J., Boucher, H., Russo, R. L., Bonney, M. W., Hunt, T. D., and Mohr, J. F., III. (2016). Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 37(1), 71–84. https://doi.org/10.1002/phar.1868. 
6. WHO Global Strategy for Containment of Antimicrobial Resistance (2001). https://www.who.int/drugresistance/WHO_Global_Strategy_English.pdf
7. Tenover, F. C. (2006). Mechanisms of Antimicrobial Resistance in Bacteria. The American Journal of Medicine, 119(6), S3–S10. https://doi.org/10.1016/j.amjmed.2006.03.011. 
8. Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., Martínez-Solano, L., and Sánchez, M. B. (2009). A global view of antibiotic resistance. FEMS Microbiology Reviews, 33(1), 44–65. https://doi.org/10.1111/j.1574-6976.2008.00142. 
9. Andersson, D. I., and Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology, 8(4), 260–271. https://doi.org/10.1038/nrmicro2319
10. Burke, J. P. (2003). Infection Control — A Problem for Patient Safety. New England Journal of Medicine, 348(7), 651–656. https://doi.org/10.1056/nejmhpr020557
11. Ventola, C.L., 2015. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 40(4), p.277.
12. Global Health- India (2019). https://www.cdc.gov/globalhealth/countries/india/pdf/India-Factsheet-p.pdf 
13. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Zorzet, A. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/s1473-3099(17)30753-3
14. Antimicrobial resistance on global surveillance (2014). https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf?sequence=1
15. Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., and Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750. https://doi.org/10.1016/s1473-3099(14)70780-7 
16. McGettigan, P., Roderick, P., Kadam, A., and Pollock, A. M. (2017). Access, Watch, and Reserve antibiotics in India: challenges for WHO stewardship. The Lancet Global Health, 5(11), e1075–e1076. https://doi.org/10.1016/s2214-109x(17)30365-0
17. Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? (2017). Swiss Medical Weekly, 147(4748). https://doi.org/10.4414/smw.2017.14553
18. How Much Water is there on Earth? (2019). https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-there-earth?qt-science_center_objects=0#qt-science_center_objects
19. Kleigrewe, K., Gerwick, L., Sherman, D. H., and Gerwick, W. H. (2016). Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Natural Product Reports, 33(2), 348–364. https://doi.org/10.1039/c5np00097a
20. Martins A., Vieira, H., Gaspar H., and Santos, S. (2014). Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Marine Drugs, 12(2), 1066–1101. https://doi.org/10.3390/md12021066
21. Trindade M., van Zyl, L. J., Navarro-Fernández, J., and Abd Elrazak, A. (2015). Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00890
22. Skropeta D., and Wei, L. (2014). Recent advances in deep-sea natural products. Nat. Prod. Rep., 31(8), 999–1025. https://doi.org/10.1039/c3np70118b
23. Shinde, P., Banerjee, P., and Mandhare A. (2019). Marine natural products as source of new drugs: a patent review (2015–2018). Expert Opinion on Therapeutic Patents, 29(4), 283–309. https://doi.org/10.1080/13543776.2019.1598972
24. Rajivgandhi G., Vijayan, R., Kannan, M., Santhanakrishnan, M., and Manoharan, N. (2016). Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens. Bioactive Materials, 1(2), 140–150. https://doi.org/10.1016/j.bioactmat.2016.11.002
25. Rajivgandhi G., Ramachandran, G., Maruthupandy M., Vaseeharan B., and Manoharan, N. (2019). Molecular identification and structural characterization of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) and its antibacterial efficacy against isolated ESBL producing bacteria. Microbial Pathogenesis, 126, 138–148. https://doi.org/10.1016/j.micpath.2018.10.014
26. Hamed Norouzi, Abolghasem Danesh, Mojtaba Mohseni, and Mohammad Rabbani khorasgani. (2018). Marine Actinomycetes with Probiotic Potential and Bioactivity Against Multidrug-resistant Bacteria. International Journal of Molecular and Cellular Medicine, 7(1). https://doi.org/10.22088/IJMCM.BUMS.7.1.44
27. Al-Dhabi, N. A., Mohammed Ghilan, A.K., Esmail, G. A., Valan Arasu, M., Duraipandiyan V., and Ponmurugan K. (2019). Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling and its in vitro inhibitory property against multidrug resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. Journal of Infection and Public Health, 12(4), 549–556. https://doi.org/10.1016/j.jiph.2019.01.065
28. Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. An antibiotic agent pyrrolo[1,2- a ]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018;8(32):17837–46. 
29. Rajivgandhi, G., Muneeswaran, T., Maruthupandy, M., Ramakritinan, C. M., Saravanan, K., Ravikumar, V., and Manoharan, N. (2018). Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microbial Pathogenesis, 125, 325–335. https://doi.org/10.1016/j.micpath.2018.09.025
30. Tuin, A. W., Grotenbreg, G. M., Spalburg, E., de Neeling, A. J., Mars Groenendijk, R. H., van der Marel, G. A. Overhand, M. (2009). Structural and biological evaluation of some loloatin C analogues. Bioorganic and Medicinal Chemistry, 17(17), 6233–6240. https://doi.org/10.1016/j.bmc.2009.07.049
31. Machado, H., Mansson, M., and Gram, L. (2014). Draft Genome Sequence of Photobacterium halotolerans S2753, Producer of Bioactive Secondary Metabolites. Genome Announcements, 2(3). https://doi.org/10.1128/genomea.00535-14
32. Hu, Y., Phelan, V., Ntai, I., Farnet, C. M., Zazopoulos, E., and Bachmann, B. O. (2007). Benzodiazepine Biosynthesis in Streptomyces refuineus. Chemistry and Biology, 14(6), 691–701. https://doi.org/10.1016/j.chembiol.2007.05.009
33. Li, D., Carr, G., Zhang, Y., Williams, D. E., Amlani, A., Bottriell, H., Andersen, R. J. (2011). Turnagainolides A and B, Cyclic Depsipeptides Produced in Culture by a Bacillus sp.: Isolation, Structure Elucidation, and Synthesis. Journal of Natural Products, 74(5), 1093–1099. https://doi.org/10.1021/np200033y
34. Engelhardt, K., Degnes, K. F., Kemmler, M., Bredholt, H., Fjaervik, E., Klinkenberg, G., Sletta, H., Ellingsen, T. E., and Zotchev, S. B. (2010). Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine Nocardiopsis Species. Applied and Environmental Microbiology, 76(15), 4969–4976. https://doi.org/10.1128/aem.00741-10 
35. Mada Triandala Sibero, Tao Zhou, Yasuhiro Igarashi, Ocky Karna Radjasa, Agus Sabdono, Agus Trianto, Tiara Ulfa Bachtiarini, Muhammad Syaifudien. (2020). Bahry Chromanone-type compounds from marine sponge-derived Daldinia eschscholtzii KJMT FP 4.1. Journal of Applied Pharmaceutical Science, 10(1), 1–7. https://doi.org/10.7324/japs.2020.101001 

Recomonded Articles:

Author(s): Niha Naveed, Karthikeyan Murthykumar, Subasree Soundarajan, Sripradha Srinivasan

DOI: Not Available         Access: Open Access Read More

Author(s): Prasad V. Patrekar, Sachin S. Mali

DOI: Not Available         Access: Open Access Read More

Author(s): Koushika Das, Pranit Krishna, Avipsha Sarkar, Shanmuga Sundari Ilangovan, Shampa Sen

DOI: 10.5958/0974-360X.2017.00267.0         Access: Open Access Read More

Author(s): U.S Mahadeva Rao, Khamsah Suryati Mohd, Abdurrazaq Muhammad, Bashir Ado Ahmad, Mohaslinda Mohamad, Rosmawati Mat Ali

DOI: Not Available         Access: Open Access Read More

Author(s): Avinash Bhagwat, Suhas M Kakade, Chirag V Naval, Mukesh Tilker, Ravindra M Walture, Sagar A Adichwal and Atul P Chaudhari

DOI: Not Available         Access: Open Access Read More

Author(s): Yarnykh T. G., Kotvitska A. A., Tykhonov A. I., Rukhmakova O. A.

DOI: 10.5958/0974-360X.2020.00614.9         Access: Open Access Read More

Author(s): Shrivastava Alankar, Jain R., Agrawal R.K., Ahirwar D.

DOI:         Access: Open Access Read More

Author(s): A. Julius, Ramachandran Vedasendiyar, Archana Devakannan, Sujatha Rajaraman, Balamurugan Rangasamy, V. Saravanan

DOI: 10.5958/0974-360X.2017.00062.2         Access: Open Access Read More

Author(s): D. Benito Johnson, Appalaraju Gorle

DOI: Not Available         Access: Open Access Read More

Author(s): Kousalya M., Geetha P., Jesuraja A., Vinoth Kumar M

DOI: 10.5958/0974-360X.2017.00014.2         Access: Open Access Read More

Author(s): Gopinath G, Thirumal M, P. R. Kumar

DOI: 10.5958/0974-360X.2020.00362.5         Access: Open Access Read More

Author(s): Neha Rajput, Dinesh Sachan, Shikha Gangwar, Dipti Sachan

DOI: Not Available         Access: Open Access Read More

Author(s): Mohammed Ehtesham Ur Rahman, Mohammed Abdul Haseeb, Mohammed Saleem, Abdul Naveed

DOI: Not Available         Access: Open Access Read More

Author(s): Manoj S. Pagare, Leena Patil, Vilasrao J. Kadam

DOI: Not Available         Access: Open Access Read More

Author(s): Pankaj Kumar, Jennifer Fernandes, Abhishek Kumar

DOI: 10.5958/0974-360X.2017.00023.3         Access: Open Access Read More

Author(s): Suleiman Danladi, Mohammed Alkassim Hassan, Idris Aliyu Masa’ud, Umar Idris Ibrahim

DOI: 10.5958/0974-360X.2018.00768.0         Access: Open Access Read More

Author(s): Tarasankar Maity, Ayaz Ahmad, Nilanjan Pahari, Subarna Ganguli

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags