Author(s): Monika Sahu, Vinod Kumar, Veenu Joshi

Email(s): vinu.jsh@gmail.com

DOI: 10.52711/0974-360X.2021.00411   

Address: Monika Sahu1, Vinod Kumar2, Veenu Joshi1*
1Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur-492010.
2Govt. NPG Science College, Raipur.
*Corresponding Author

Published In:   Volume - 14,      Issue - 4,     Year - 2021


ABSTRACT:
Diabetes Mellitus is the most prevalent metabolic disorder which has made it a major health threat worldwide. The available synthetic drugs for the cure of Diabetes mellitus are associated with high cost, various side effects and several limitations. Medicinal plants are the rich depots of the phytochemicals which can be useful for the treatment of chronic disorders. These plants are the better alternative to chemical drugs causing less or no harm to the body. Several plants are traditionally known for their antidiabetic properties but the detail investigation of their active molecules is required in order to be developed as therapeutic drug. Therefore, the present review aims to provide comprehensive information on various Indian medicinal plants, their constituents and mechanism of action for the cure of diabetes mellitus.


Cite this article:
Monika Sahu, Vinod Kumar, Veenu Joshi. Indian medicinal plants with antidiabetic potential: An overview. Research Journal of Pharmacy and Technology. 2021; 14(4):2328-5. doi: 10.52711/0974-360X.2021.00411

Cite(Electronic):
Monika Sahu, Vinod Kumar, Veenu Joshi. Indian medicinal plants with antidiabetic potential: An overview. Research Journal of Pharmacy and Technology. 2021; 14(4):2328-5. doi: 10.52711/0974-360X.2021.00411   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-4-87


REFERENCES:
1. Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti hyperglycemic potential of Tridax procumbens (Linn.). BMC Complement Altern Med. 2009; 9: 48. 
2. Bharti SK,  Krishnan S, Kumar A, Kumar A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways.  Ther Adv Endocrinol Metab. 2018; 9(3): 81–100.
3. Saeedi P, Petersohn I , Salpea P, Malanda  B, Karuranga S, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition On behalf of the IDF Diabetes Atlas Committee.  Diabetes Research and Clinical Practice. (2019); 157.
4. Li WL, Zheng HC, Bukuru J,  De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. (2004); 92(1): 1–21.
5. Neustadt J, Pieczenik SR, Medication-induced mitochondrial damage and disease. Mol Nutr Food Res. (2008); 52: 780-788.
6. Kumar A, Bharti SK, Kumar A. Therapeutic molecules against type 2 diabetes: what we have and what are we expecting?, Pharmacol Rep. (2017);  69: 959–970. 
7. Kumar A, Bharti SK, Kumar A .Type 2 diabetes mellitus: the concerned complications and target organs.  Apollo Med. (2014); 11: 161–166. 
8. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants.  African Journal of Biotechnology. (2005); 4(7). 
9. McChesney D, Venkataraman SK, Henri JT. Plant natural products: Back to the future or into extinction? Phytochemistry. (2007); 68(14): 2015-2022.
10. Bharti SK, Krishnan S, Kumar A, Rajak KK, Murarie K et al. Antihyperglycemic activity with DPP-IV inhibition of alkaloids from seed extract of Castanospermum australe: investigation by experimental validation and molecular docking. Phytomedicine. (2012); 20: 24–31.
11. Oliver-Bever B. Oral hypoglycemic action of medicinal plants in tropical West Africa, Cambridge University Press, London, (1986); 245–67. 
12. Rai MK. A review on some antidiabetic plants of India. Ancient Sciences of Life. (1995); 14: 42–54. 
13. Wadood A, Wadood N, Shah SA. Effect of Acacia arabica and Caralluma edulis on blood glucose level of normal and alloxan diabetic rabbits. Journal of Pakistan Medical Association. (1989); 39(8): 208-212.
14. Upadhya S, Shanbhag KK, Suneetha G, Nai B. A study of hypoglycemic and antioxidant activity of Aegle marmelos in alloxan induced diabetic rats. Indian J Physiol Pharmacol. (2004); 48(4): 476-480.
15. Narender T, Shweta S, Tiwari P, Reddy KP, Khaliq T et al. Antihyperglycemic and antidyslipidemic agent from Aegle marmelos. Bioorg Med Chem Lett. (2007); 17: 8–11.
16. Kumari K , Augusti KT. Antidiabetic and antioxidant effect of S-methyl cysteine sulfoxide isolated from onion (Allium sepa Linn) as compared to standard drug in alloxan diabetic rats.  Indian Journal of Experimental Biology. (2002); 40(9): 1005-1009.
17. Thomson M,  Al-Amin ZM, Al-Qattan KK, Shaban LH ,  Ali M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int J Diabetes Metabolism. (2007); 15: 108-115. 
18. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990–2000). Int J Diabetes Metab. (2006); 14: 1–25.
19. Shirwaikar A, Rajendran K , Kumar DC. Oral antidiabetic activity of Annona squamosa leaf alcohol extract in NIDDM rats. Pharmaceutical Biology. (2004); 42(1): 30-35.
20. Mondal S, Bhattacharys S , Biswas M. Antidiabetic activity of Areca catechu leaf exracts against streptozotacin induces diabetic rats. Journal of Advanced Pharmacy Education and Research. (2012); 2(1): 10-17.
21. Chatopadhyay RR, Possible mechanisms of antihyperglycemic effect of Azadirachta indica leaf extract part 4. General Pharmacology. (1996);  27(3): 431-434.
22. Frankish N, De Sousa Menezes F, Mills C , Sheridan H.  Enhancement of insulin release from the beta-cell line INS-1 by an ethanolic extract of Bauhinia variegata and its major constituent roseoside. Planta Med. (2010); 76(10): 995–997. 
23. Bolkent S, Yanardag R, Tabakogluoguz A, Ozsoy-sacan O. Effect of chard (Beta vulgaris L.var.cicla) extract on pancreatic beta cell in streptozotocin diabetic rats: A morphological and biochemical study. J Ethnopharmacol. (2000); 73: 251-259.
24. Grover JK, Yadav SP , Vats V. Effect of feeding Murraya koeingii, Brassica juncea diet kidney function and glucose level in streptozotocin diabetic mice. J Ethnopharmacol. (2003); 85: 1-5.
25. Parameshwar S, Srinivasan KK, Mallikarjuna Rao C. Oral antidiabetic activity of different extract of Caesalpinia bonducella seed kernels. Pharmaceutical Biology.  (2002);  40(8): 590-595.
26. Koyama Y, Abe K, Sano Y , Shizaki L. Effect of green tea on gene expression of hepatic gluconeogenic enzyme in vivo. Planta Medica. (2004);  70(11: 1100-1102.
27. Ayodhya S, Kusum S, Anjali S. Hypoglycaemic activity of different extracts of various herbal plants. Int J Ayurveda Res Pharm.  (2010);  1(1): 212–224.
28. Talan I, Ragoobirsingh D, Morrison EY. The effect of capsaicin on blood glucose plasma insulin level and insulin binding in dog models. Phytotherapy Research. (2001);  15(5): 391-394.
29. Islam MS, Choi H. Dietary red chilli (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in type 2 diabetes model of rats. Phytother Res. (2008); 22(8): 1025–1029. 
30. Fekeye TO, Oladipupo T, Showande O, Ogunremi Y. Effects of co-adminstration of extract of Carica papaya on activity of two oral hypoglycemic agents. Trop J Pharm Res.  (2007); 6(1): 671-678.
31. Augustine I Airaodion, Emmanuel O Ogbuagu, John A Ekenjoku, Uloaku Ogbuagu. Antidiabetic effect of ethanolic extract of Carica papaya leaves in alloxan-induced diabetic rats. J. Pharm. Anal. (2018); 8(2): 109–118.   
32. Singh S, Vats P, Suri S,  Radhe MML. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. Journal of Ethanopharmacology. (2001); 76: 269-277.
33. Ali Al-Samydai, Farah Al-Mamoori, Mayada Shehadeh, Mohammad Hudaib. Anti–Diabetic Activity of Cinnamon: A Review. International Research Journal of Pharmacy and Medical Sciences. (2018); 1(5): 43-45.
34. Muhatadi H, Azizah T, Suhendi A , Yen KH. Antidiabetic and antihypercholesteralemic activities of Citrus sinensis peel: in vivo study. National Journal of Physiology, Pharmacy and Pharmacology. (2015); 5(5): 382-385.
35. Mohammad SI, Chopda MZ, Patil, RH, Vishwakarma KS, Maheshwari VL. In vivo antidiabetic and antioxidant activities of Coccinia grandis leaf extract against Streptozotacin induced diabetes in experimental rats.  Asian Pacific Journal of Tropical Medicine. (2016); 6(4): 298-304.
36. Abou El-Soud NH, El-Lithy NA, El-Saeed GSM, Wahby MS, Khalil MY et al. Efficacy of Coriandrum sativum L. essential oil as antidiabetic.  J Appl Sci Res. (2012); 8(7): 3646–55.
37. Swanston-Flatt SK, Day C, Bailey CJ, Flatt PR. Traditional plant treatments for diabetes, Studies in normal and streptozotocin diabetic mice. Diabetologia. (1990); 33: 462-464. 
38. Jagtap AG, Patil PB. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem Toxicol.  (2010);  48: 8-9.
39. Lekshmi PC,  Arimboor R, Raghu KG, Menon AN. Turmerin, the antioxidant protein from turmeric (Curcuma longa) exhibits antihyperglycaemic effects. Natural Product Research. (2012); 26(17): 1654-1658.
40. Srinivasan P, Vijayakumar S, Kothandaraman S, Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches.  Journal of Pharmaceutical Analysis. (2018); 8(2): 109-118.
41. Chauhan A, Sharma PK, Srivastava P, Kumar N , Duehe R. Plants having potential antidiabetic activity: a review. Der Pharm Lett. (2010); 2(3): 369–387. 
42. Xiu LM, Miura AB, Yamamoto K,  Kobayashi T, Song QT et al. American Journal of Chinese Medicine. (2001); 29: 493–500
43. Gray AM, Flatt PR. Antihyperglycemic action of Eucalyptus globulus (eucalyptus) is associated with Pancreatic, extra pancreatic effects in mice. Journal of Nutrition. (1998); 128(12): 2319-2323.
44. Wadood N, Wadood A, Nisar M. Effect of Ficus religiosa on blood glucose level and total lipid level of normal and alloxan diabetic rabbits.  Journal of Ayub Medical College. (2003); 15(4): 40-42.
45. Ko BS, Jang JS, Hong SM, Sung SR, Lee JE et al. Changes in components, glycyrrhizin and glycyrrhetinic acid, in raw Glycyrrhiza uralensis Fisch, modify insulin sensitizing and insulinotropic actions. Biosci Biotechnol Biochem.  (2007); 71(6): 1452–1461. 
46. Grover JK, Yadav S , Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. (2002); 81(1): 81–100. 
47. Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma A. An analytical review of plants for antidiabetic activity with their phytoconstituents and mechanism of action. International Journal of Pharmaceutical Sciences and Research. (2010); 1: 29-46. 
48. Tsiodras S , Kshin R, Christian M,  Asass D. Anticholinergic toxicity associated with lupine seeds as a home remedy for diabetes mellitus. Annals of Emergency Medicine. (1999); 33(6): 715-717.
49. Aderibigbe AO, Emudianughe TS, Lawal BAS. Evaluation of the antidiabetic action of Mangifera indica in mice. Phytotherapy Research. (2001); 15(5): 456-458.
50. Ng TB, Wong CM, Li WW, Yeung HW. Insulin-like molecules in Momordica charantia seeds. J Ethnopharmacol. (1986); 15: 107.
51. Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: A review. J Altern Complement Med.  (2004); 10(2): 369–378.  
52. Chaurasia S, Saxena RC, Chaurasia ID, Srivastav R. Antidiabetic activity of Morus alba in Streptozotacin induced diabetic rats. Int J Chem Sci.  (2011); 9(2): 489-92.
53. Husna F, Suyatna FD, Arozal W, Poerwaningsih EH. Anti-Diabetic Potential of Murraya Koenigii (L.) and its antioxidant capacity in Nicotinamide-Streptozotocin induced diabetic rats. Drug Res (Stuttg). (2018); 68(11): 631-636.
54. Pari L, Umamaheswari J.  Antihyperglycemic activity of Musa sapientum flower: Effect on lipid peroxidation in alloxan induced diabetic rats. Phytotherapy Research. (2000); 14: 136-138.
55. Dhanabal SP, Sureshkumar M,  Ramanathan M , Suresh M.  Hypoglycemic effect of ethanolic extract of Musa sapientum on alloxan-induced diabetes mellitus in rats and its relation with antioxidant potential. Journal of Herbal Pharmacotherapy. (2005); 5(2): 7-19.
56. Chatopadhyay RR. Hypoglycemic effect of Ocimum sanctum leaf extract in normal, streptozotocin diabetic rats. Indian Journal of Experimental Biology. (1993); 31(11): 891-893.
57. Srividya N, Periwal S. Diuretic, hypotensive, and hypoglycemic effect of Phyllanthus amarus. Indian Journal Experimental Biology. (1995); 33(11): 861-864.
58. Saravanamuttu S, Sudarsanam D. Antidiabetic plants and their active ingredients: A review. International Journal of Pharmaceutical Sciences and Research. (2012); 3(10): 3639-3650.
59. Gupta S, Singh N, Jaggi AS. Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera. J Basic Clin Physiol Pharmacol. (2014); 25: 255–265. 
60. Deguchi Y, Osada K, Uchida K, Kimura H, Yoshikawa M et al. Effects of extract of guava leaves on the development of diabetes in the db/db mouse and on the postprandial blood glucose of human subjects. Nippon Nogei Kagaku Kaishi, (1998); 72: 923–31.  
61. Eidenberger T, Selg M, Krennhuber K. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus.  Fitoterapia. (2013); 89: 74-79.
62. Das AK, Subhash C, Mandal, Sanjay K, Baberjee et al. Studies on the hypoglycemic activities of Punica granatum seed in streptozotocin induced diabetic rats. Phytotherapy Research. (2001); 15(7): 628-629.
63. Azmi MB, Quuraishi SA.  Rauwolfia serpentine improves altered glucose and lipid homeostasis in fructose induced type 2 diabetic mice, Pakistan Journal of Pharmaceutical Sciences. (2016); 29(5). 
64. Jeppesen PB, Gregersen S, Alstrup KK, Hermansen K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine.  (2001); 9(1): 9–14.
65. Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K. Stevioside acts directly on pancreatic beta cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism. (2000); 49(2): 208–214. 
66. Raza A, SadiqButt M, Iahtisham-Ul-Haq, RasulSuleria HA. Jamun (Syzygium cumini) seed and fruit extract attenuate hyperglycemia in diabetic rats. Asian Pacific Journal of Tropical Biomedicine. (2017); 7(8): 750-754.
67. Singh SS, Pandey SC, Srivastava S, Gupta VS, Patro B et al. Chemistry and medicinal properties of Tinospora cordifolia (Guduchi). Indian J Pharmacol.  (2003); 35: 83–91.
68. Geberemeskel GA, Debebe YG, Nguse NG. Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum-graecum L.) on hyperlipidemia in diabetic patients. Journal of Diabetes Research. (2019); 8.
69. Haeri MR, Izaddoost M, Ardekani MR, Nobar MR, White KN. The effect of fenugreek 4-hydroxyisoleucine on liver function biomarkers and glucose in diabetic and fructose-fed rats. Phytother Res. (2009); 23(1): 61–64.
70. Modak M, Dixit P, Londhe J, Ghaskadbi S, Paul A et al. Indian herbs and herbal drugs used for the treatment of diabetes.  J Clin Biochem Nutr. (2007); 40(3): 163–173.
71. Broca C, Gross R, Petit P, Sauvaire Y, Manteghetti M et al. 4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties. Am J Physiol. (1999); 277: E617–E623.
72. Andallu B, Radhika B. Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera Dunal) root.  Indian Journal of Experimental Biology. 2000; 38(6); 607-609.
73. Akhani SP, Vishwakarma SL, Goyal RK. Antidiabetic activity of Zingiber officinale in streptozotocin induced type I diabetic rats. Journal of Pharmacy and Pharmacology. (2004); 56: 101-105.
74. Rubio OC, Cuellar AC, Rojas N, Castro HV, Rastrelli L et al. A polyisoprenylated benzophenone from Cuban propolis. J Nat Prod. (1999); 62: 1013–5.
75. Kumar Ilavarasan R,  Jayachandran T, Deecaraman M,  Aravindan P  et al. Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. J Med Plants Res. (2008); 2: 246–9. 
76. Chattopadhyay RR. A comparative evaluation of some blood sugar lowering agents of plant origin. J Ethnopharmacol. (1999); 67(3): 367– 72. 
77. Kirtikar KR, Basu BD. Indian Medicinal Plants, (Periodical Experts, Delhi). 1-4 (1993).
78. Daisy P,  Eliza J, Abdul K, Farook MM. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats. J Ethnopharmacol. (2009);  126: 339–44. 
79. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. (2002); 51. 
80. Chau CF, Huang YL, Lee MH.  In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng. Journal of Agricultural and Food Chemistry. (2003); 51: 6623–6626. 
81. Adaramoye OA, Adeyemi EO. Hypoglycaemic and hypolipidaemieffects of fractions from kolaviron a biflavonoid complex from Garcinia kola in streptozotocin-induced diabetes mellitus rats. J Pharm Pharmacol. (2006); 58: 121–8. 
82. Rawat R, Kumar M, Rahuja N, Srivastava DSL, Moorthy R et al. Anti-hyperglycemic compound (GII) from fenugreek (Trigonella foenum-graecum Linn) seeds its purification and effect in diabetes mellitus. Indian J Exp Biol. (2010); 48: 1111–8. 
83. Latha RC, Daisy P. Insulin-secretagogue antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb in streptozotocin-induced diabetic rats. Chem Biol Interact. (2011); 189: 112–8.
84. Kang MH, Lee MS, Choi MK, Min KS, Shibamoto T.  Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats. J Agric Food Chem. (2012); 60(10): 2517–24. 
85. Zang Y, Sato H, Igarashi K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. 'Jindai') leaves on KK-A(y) mice. Biosci Biotechnol Biochem. (2011); 75(9): 77–84.
86. Kiyoteru T, Shinichi T, Junichi K, Shunivhi Y, Kazuo L et al. Antidiabetic Agents from Medicinal Plants. Jpn Kokai yokkyo koho. (2005); 12.
87. Ghosh T, Maity TK, Singh J. Antihyperglycemic activity of bacosine a triterpene from Bacopa monnieri in alloxan-induced diabetic rats. Planta Med. (2011); 77: 804–8.
88. Singh AB, Yadav DK, Maurya R, Srivastava AK. Antihyperglycaemic activity of a-amyrin acetate in rats and db/db mice. Nat Prod Res. (2009); 23: 876–82.
89. McWhorter LS. Biological complementary therapies: A focus on botanical products in diabetes. Diabetes Spectrum. (2001); 14: 199–208.
90. Wang BX , Yang M, Jin YL, Cui ZY, Wang Y. Studies on the hypoglycemic effect of ginseng polypeptide. Yao Xue Xue Bao. (1990); 25(6): 401-5.
91. Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian journal of Biochemistry and Biophysics. (1995); 32(1): 49-54.
92. Novergicus O, Jevas C. Anti-diabetic effects of Allium cepa (onions) aqueous extracts on alloxan-induced diabetic Rattu., Journal of Medicinal Plants Research. (2011); 5(7): 1134-1139.
93. Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cystein sulphoxide, an insulin secretagogue, in diabetic rats. Experientia. (1996); 52(2): 115-119.
94. Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: a review. Nutrition Journal. (2002); 1(1): 4.
95. Patel DK,  Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. (2012); 2(4): 320-330.
96. T Thirumalai, Therasa SV, Elumalai EK, David E.  Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pacific Journal of Tropical Biomedicine. (2011 ); 1(4): 323-325.
97. Pusuloori R, Sharon SS, Reddy YV, Kumar MS. Anti-diabetic profile of Cinnamon powder extract in experimental diabetic animals. International Journal of Pharmaceutical Sciences and Research. (2016); 7(2): 824-828.
98. Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Plant Foods for Human Nutrition. (2011); 66: 143-148.
99. Medagama AB. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutrition Journal. (2015); 14. 
100. Attanayake AP, Jayatilaka KAPW, Pathirana C, Mudduwa LKB. Acute  hypoglycemic  and  anti-hyperglycemic effects  of  ten Sri Lankan medicinal plant extracts  in  healthy  and  streptozotocin  induced  diabetic rats.  International Journal of Diabetes in Developing Countries. (2014). 
101. Tahir Hafizah Umaira, Sarfraz Raja Adil, Ashraf Aisha, AdilShazia. Chemical composition and antidiabetic activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum), International Journal of Food Properties. (2016); 19(10). 
102. Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Aγ mice.  J Agric Food Chem.  (2005); 53: 959–963. 
103. Kim HS, Hwang YC, Koo SH, Park KS, Lee MS et al. PPAR-γ Activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in Pancreatic β-Cells. PLoS ONE. (2013).
104. Okoli CO, Obidike IC,  Ezike AC,  Akah PA, Salawu OA. Studies on the possible mechanisms of antidiabetic activity of extract of aerial parts of Phyllanthus niruri. Pharmaceutical Biology, (2011); 49(3): 248-255.
105. Shetti A, Sanakal RD, Kaliwal BB.  Antidiabetic effect of ethanolic leaf extract of Phyllanthus amarus in alloxan induced diabetic mice, Asian Journal of Plant Science and Research. (2012); 2 (1): 11-1.
106. Kavitha S, Rameshkannan DM, Mani DP. Analysis of antioxidant and antidiabetic activity of Piper nigrum leaf extract by in-vitro assay. J Pharm Bio Sci. (2018); 13: 53–56.
107. Gharib E,  Kouhsari SM. Study of the Antidiabetic Activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats. Iran J Pharm Res. (2019); 18(1): 358–368.
108. Das S, Barman S. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non–insulin-dependent diabetes mellitus albino rats. Indian J Pharmacol. (2012); 44(2): 219–224.
109. Otunola Aderonke G, Afolayan Anthony J. A Review of the antidiabetic activities of ginger in ginger cultivation and its antimicrobial and pharmacological potentials. (2020).

Recomonded Articles:

Author(s): Nimbalkar V.V., Pansare P.M., Nishane B.B.

DOI: 10.5958/0974-360X.2015.00310.8         Access: Open Access Read More

Author(s): Vishal Vilas Shah, Nutan Dhanpal Shah, Prasad Vasantrao Patrekar

DOI: Not Available         Access: Open Access Read More

Author(s): Amurdhavani. B.S

DOI: 10.5958/0974-360X.2016.00299.7         Access: Closed Access Read More

Author(s): R. Narayana Charyulu, P. Parvathy Devi, Jobin Jose, A. Veena Shetty

DOI: Not Available         Access: Open Access Read More

Author(s): Ravindranath S. Misal, Vishawas R. Potphode, Vijay R. Mahajan

DOI: 10.5958/0974-360X.2017.00218.9         Access: Open Access Read More

Author(s): Rakhi Mehra, Renu Makhija, Neera Vyas

DOI: Not Available         Access: Open Access Read More

Author(s): Niharika, Navneet Verma

DOI: 10.5958/0974-360X.2016.00182.7         Access: Open Access Read More

Author(s): A. S. K. Sankar, B. Datchayani, N. Balakumaran, Mohammed Rilwan, R. Subaranjani

DOI: 10.5958/0974-360X.2017.00047.6         Access: Open Access Read More

Author(s): G. Bhavani, R. Navaneethan

DOI: 10.5958/0974-360X.2017.00269.4         Access: Open Access Read More

Author(s): Jino Elsa Thomas, Usha Y Nayak*, Jagadish PC, Koteshwara KB

DOI: 10.5958/0974-360X.2017.00007.5         Access: Open Access Read More

Author(s): Prasad V. Patrekar, Sachin S. Mali

DOI: Not Available         Access: Open Access Read More

Author(s): Priya P. Munshi, D.S. Mohale, R. Akkalwar, A.V. Chandewar

DOI: Not Available         Access: Open Access Read More

Author(s): M. A. Fazeelath Banu, Karthikeyan Murthykumar, Dr. Dhanraj

DOI: 10.5958/0974-360X.2016.00184.0         Access: Open Access Read More

Author(s): Manju Rawat, SJ Daharwal, Deependra Singh

DOI:         Access: Open Access Read More

Author(s): S. R Suseem, Dhanish Joseph

DOI: 10.5958/0974-360X.2019.00067.2         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags