Author(s): Ratnaparkhi M.P., Andhale R.S., Karnawat G.R.


DOI: 10.52711/0974-360X.2021.00410   

Address: Ratnaparkhi M.P.*, Andhale R.S., Karnawat G.R.
Dept. of Pharmaceutics, Marathwada Mitra Mandal’s College of Pharmacy, Thergaon (Kalewadi), Pune - 411033 India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 4,     Year - 2021

Nanofibers are the fibers having diameter in nanometer ranging from 50-1000nm.Nanofibers can be prepared by using polymers like cellulose, silk, fibroin, keratin, gelatin, polylactic acid, polyurethane etc. The chain of polymers are connected by covalent bonds. The diameter of nanofibers depends on the type of polymers used in preparation method. There are various methods are used to fabricate nanofibers like electrospinning, thermal induced phase separation, drawing, template synthesis, self-assembly. Nanofibers are widely used in various fields like in filtration, affinity membrane and recovery of metal ions, tissue engineering, wound dressing, catalyst s; enzyme, carriers, sensor, energy conversion and storage, sound absorbtive material etc. Nanofibers are the newer technology which is widely used than the others due to large surface area. It has high porosity and small pore size hence it does not allow to bacterial infection due to larger size of bacteria. It has higher mechanical strength hence it is easy to use as compare to other.

Cite this article:
Ratnaparkhi M.P., Andhale R.S., Karnawat G.R. Nanofibers – A Newer Technology. Research Journal of Pharmacy and Technology. 2021; 14(4):2321-7. doi: 10.52711/0974-360X.2021.00410

Ratnaparkhi M.P., Andhale R.S., Karnawat G.R. Nanofibers – A Newer Technology. Research Journal of Pharmacy and Technology. 2021; 14(4):2321-7. doi: 10.52711/0974-360X.2021.00410   Available on:

1. Vasita R.; Katti, D. (2006). "Nanofibers and their applications in tissue engineering". Int J Nanomedicine. 1 (1): 15–30
2. Di Lullo, Gloria A.; Sweeney, Shawn M.; Körkkö, Jarmo; Ala-Kokko, Leenaand San Antonio, James D. (2002). "Mapping The Ligand-Binding Sites And Disease-Associated Mutations On The Most Abundant Protein In The Human, Type I Collagen". J. Biol. Chem. 277 (6): 4223-4231. Doi:10.1074/Jbc.M110709200. Pmid 11704682.
3. "Leather Grown Using Biotechnology Is About to Hit The Catwalk". The Economist. 2017-08-26. Archived from The Original on 2017-09-01. Retrieved 2017-09-02.
4. W. He, Z. Ma, T. Yong, W.E. Teo, S. Ramakrishna, Fabrication of Collagen-Coated Biodegradable Polymer Nanofiber Mesh and Its Potential for Endothelial Cells Growth, Biomaterials 26 (2005) 7606–76155]
5. Jay R. Joshi And Ronak P. Patel, Role of Biodegradable Polymers in Drug Delivery, Int J Curr Pharm Res, 2012, Issue 4, 74-81
6. Rodríguez K., Gatenholm P., Renneckar S., Electrospinning Cellulosic Nanofibers for Biomedical Applications: Structure and In Vitro Biocompatibility, Cellulose 19 (2012) 1583–1598
7. Bhatnagar A, Sain M., Processing of cellulose nanofiber-reinforced composites, J. Reinf. Plast. Compos. 24 (2005) 1259–1268
8. Kim C.-W., Kim D.-S.  Kang S.-Y., Marquez M.,Joo Y.L., Structural studies of electrospun cellulose nanofibers, Polymer 47 (2006) 5097–510
9. Kulpinski P., Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method, J. Appl. Polym. Sci. 98 (2005) 1855–1859.
10. Röder T., Morgenstern B., Schelosky N., Glatter O., Solutions of cellulose in N, Ndimethylacetamide/lithium chloride studied by light scattering methods, Polymer 42 (2001) 6765–6773
11. Ishi D., Tatsumi D., Matsumoto T., Effect of solvent exchange on the solid structure D. E and dissolution behavior of cellulose, Biomacromolecules 4 (2003) 1238–1243.
12. Altman G.H., Diaz F., Jakuba C., Calabro T., Horan R.L., Chen J., Richmond H. Lu, J., Kaplan D.L, Silk-based biomaterials, Biomaterials 24 (2003)401416.
13. Melke J., Midha S., Ghosh S., Ito K., Hofmann S., Silk fibroin as biomaterial for bone tissue engineering, Acta Biomater. 31 (2016) 1–16.
14. Schwartz G, Tee B. C.-K., MeiJ., Appleton A.L., Kim D.H., Wang H., Bao Z., Flexible polymer transistors with high pressure sensitivity for application inelectronic skin and health monitoring, Nat. Commun. 4 (2013) 1859.
15. Wang X., Xiong Y. Gu, Z, Cui Z, Zhang T., Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals, Adv. Mater. 26 (2014) 1336–1342.
16. Wang Q., Jian M., Wang C., Zhang Y., Carbonized silk nanofiber membrane for transparent and sensitive electronic skin, Adv. Funct. Mater. 27 (2017).
17. Wang Q., Jian M., Wang C., Zhang Y., Carbonized silk nanofiber membrane for transparent and sensitive electronic skin, Adv. Funct. Mater. 27 (2017).
18. Kean T., Thanou M., Biodegradation, biodistribution and toxicity of chitosan, Adv. Drug Deliv. Rev. 62 (2010) 3–11.
19. Ali A., Ahme S., d, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol. 109 (2018) 273–286.
20. Baranwal A., Kumar A., Priyadharshini A., Oggu G.S., Bhatnagar I., Srivastava A., Chandra P., Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications, Int. J. Biol. Macromol. 110 (2018)110–123. 
21. Sun K., Li Z., Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning, Express Polym Lett 5 (2011).
22. Sarmento B., Goycoolea F.M., Sosnik A., Neve J., Chitosan and chitosan derivatives for biological applications: chemistry and functionalization, Int. J. Carbohydr. Chem. 2011 (2011) 8026931 page.
23. Slütter B., Soema P.C., Ding Z., Verheul R., Hennink W., Jiskoot W., Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen, J. Control. Release 143 (2010) 207–214.
24. Geng X., Kwon O.-H., Jang J., Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials 26 (2005) 5427–5432.
25. Thomson R.C., Wake M.C., Yaszemski M.J. and Mikos A.G., Biodegradable Polymer Scaffolds to Regenerate Organs, Adv. Polym. Sci., 1995, 122, 245-274. 
26. Avérous L. and Pollet E., Environmental Silicate Nano-Biocomposites, Green Energy and Technology, Springer-Verlag London 2012. 
27. James B. R., Settimio P., Alicia J. E. H., Harminder S. D., Andrew H., Lisa J. W. and Felicity R. A. J. R., Gelsatin-Based Materials in Ocular Tissue Engineering, Materials, 2014, 7, 3106-3135. 
28. Z. Ma, W. He, T. Yong, S. Ramakrishna, Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation, Tissue Eng. 11 (2005) 1149–1158.
29. Jump up to:a b c d Manfred L. Hallensleben "Polyvinyl Compounds, Others" in Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a21_
30. Characterization of PVA cryogel for intravascular ultrasound elasticity imaging, Fromageau, J.; Brusseau, E.; Vray, D.; Gimenez, G.; Delachartre, P.; IEEE Transactions on Ultrasonics, F
31. John Scheirs; Duane Priddy (28 March 2003). Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers. John Wiley and Sons. p. 3. ISBN 978-0-471-49752-3.
32. Jump up to: a b "Common Plastic Resins Used in Packaging". Introduction to Plastics Science Teaching Resources. American Chemistry Council, Inc. Retrieved 24 December 2012.
33. Jump up to: a b Maul, J.; Frushour, B. G.; Kontoff, J. R.; Eichenauer, H.; Ott, K.-H. and Schade, C. (2007) "Polystyrene and Styrene Copolymers" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, doi:10.1002/14356007.a21_615.pub2 Erro electrics and Frequency Control, Volume: 50, Issue: 10. 2003, Page(s): 1318 - 1324.
34. Deval Prasad Bhattarai,  Ludwig Erik Aguilar, Chan Hee Park, and Cheol Sang Kim, Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea; 2 Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal 3 Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea Correspondence: (L.E.A.); (C.H.P.); (C.S.K.) Received: 29 June 2018; Accepted: 9 August 2018; Published: 14 August 2018
35. Wang Q., Jian M., Wang C., Zhang Y., Carbonized silk nanofiber membrane for transparent and sensitive electronic skin, Adv. Funct. Mater. 27 (2017).
36. H. Colognato, P.D. Yurchenco, Form and function: the laminin family of heterotrimers, Dev. Dyn. 218 (2000) 213–234.
37. Sarbatly R.; Kamin, Z. and Krishnaiah D. (2016). "A review of polymer nanofibers by electrospinning and their application in oil-water separation for cleaning up marine oil spills". Marine Pollution Bulletin. 106: 8–16. 
38. LIANG, Dehai, HSIAO, Benjamin, S., in CHU, Benjamin. Functional electrospunnano" broussca (olds for biomedical applications. Advanced Drug Delivery Reviews, 2007, vol. 59, str. 1392–1412.
39. Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospunnano fibers. Coll Surf A: Physicochem Eng Asp, 2001, 187-188(8): 469―48
40. Kosmider K, Scott J. Polymeric nanofibres exhibit an enhanced air filtration performance. Filtr Separat, 2002, 39(6): 20―2
41. Vasita, R.; Katti, D. (2006). "Nanofibers and their applications in tissue engineering". Int J Nanomedicine. 1 (1): 15–30
42. Ma, P.; Zhang, R. (1998). "Synthetic nanoscale fibrous extracellular matrix". J Biomed Mater Res. 46 (1): 60–72.
43. Ma, P. (2004). "Scaffolds for tissue fabrication". Materials Today. 7 (5): 30–40
44. Huang, Z; et al. (2003). "A review on polymer nanofibers by electrospinning and their applications in nanocomposites". Compos Sci Technol. 63 (15) 
45. Ramakrishna, S; et al. (2005). An Introduction to Electrospinning and Nanofibers. World Scientific. 
46. Ondarcuhu, T.; Joachim, C. (1998). "Drawing a single nanofiber over hundreds of microns". Europhys Lett. 42 (2): 215–220. 
47. Martin, C. (1995). "Template synthesis of electronically conductive polymer nanostructures". Acc Chem Res. 28 (2
48. Martin, C. (1995). "Template synthesis of electronically conductive polymer nanostructures". Acc Chem Res. 28 (2): 61–68.
49. Martin, C. (1994). "Nanomaterials: a membrane-based synthetic approach". Science. 266 (5193): 1961 - 1966): 61
50. Malkar, N; et al. (2003). "Characterization of peptide amphiphiles possessing cellular activation sequences". Biomacromolecules. 4 (3): 518–528. 
51. Zhang, C; et al. (2014). "Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis". ACS Nano. 8 (11): 15–23. 
52. Marler J J, Upton J, Langer R, et al. Transplantation of cells in matrixes for tissue regeneration. Adv Drug Deliver Rev, 1998, 33(1-2): 165―182.
53. Yih T C, Al-Fandi M. Engineered nanoparticles as precise drug de-livery systems. J Cell Biochem, 2006, 97(6): 1184―1190
54. Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospin bioabsorbable nanofiber membranes. Polymer, 2002, 43(16).
55. Luu Y K, Kim K, Hsiao B S, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Contr Rel, 2003, 89(2): 341―353.
56. Kim K, Luu Y K, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospinning nanofibers scaffolds. J Contr Rel, 2004, 98(1): 47―56.
57. Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospinning fiber formulation. J Contr Rel, 2005, 105(1-2): 43―51.

Recomonded Articles:

Author(s): Sidra Choudhary, Sanket Dharashivkar, Chetan Mahajan, Madhuri Gaikwad

DOI: 10.5958/0974-360X.2020.00495.3         Access: Open Access Read More

Author(s): Keerthic Aswin S, Jothishwar S, Visvavela Chellaih Nayagam P, G. Priya

DOI: 10.5958/0974-360X.2018.00861.2         Access: Open Access Read More

Author(s): Poornima D Adpekar, Annamalai Rama, Usha Rani, Anup Naha

DOI: 10.5958/0974-360X.2020.00972.5         Access: Open Access Read More

Author(s): Ratnaparkhi M.P., Andhale R.S., Karnawat G.R.

DOI: 10.52711/0974-360X.2021.00410         Access: Closed Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles