Author(s): Enas A. Mohamed, Ahmed M. Elbarbary, Nashat M. M. Abd alaty, Nashwa K. Ibrahim, Mahmoud M. Said, Ahmed M. Salem

Email(s): mahmoudmsaid@sci.asu.edu.eg

DOI: 10.52711/0974-360X.2021.00398   

Address: Enas A. Mohamed1, Ahmed M. Elbarbary2, Nashat M. M. Abd alaty1, Nashwa K. Ibrahim3, Mahmoud M. Said4*, Ahmed M. Salem4
1Nuclear Materials Authority, Cairo, Egypt.
2Polymer Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
3Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
4Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
*Corresponding Author

Published In:   Volume - 14,      Issue - 4,     Year - 2021


ABSTRACT:
The current study was undertaken to investigate the hepatoprotective potential of nanostructured oligochitosan (NOC) against the synergistic toxic effects of ?-irradiation exposure and carbon tetrachloride (CCl4) intoxication in male rats. Adult male rats were allocated into eight groups; control, NOC-administered, ?-irradiated, CCl4-intoxicated, NOC-pretreated ?-irradiated, NOC-pretreated CCl4-intoxicated, ?-irradiated and CCl4-intoxicated, NOC-pretreated CCl4-intoxicated and ?-irradiated. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results demonstrated that the oligochitosan prepared by exposure to gamma irradiation was in the range of nanoparticles. A synergistic hepatotoxic effect was demonstrated following the exposure of rats to ?-irradiation and CCl4 intoxication, along with the induction of oxidative stress, inflammation and apoptosis. NOC was able to protect the hepatocytes from the combined toxic insults through suppressing lipid and protein oxidations, maintaining hepatic functions, downregulating the expression of some inflammatory genes, including nuclear factor kappa B (NF-?B) and interleukin 1 beta (IL-1ß), as well as enhancing the expression of the antiapoptotic Bcl2 gene and suppressing the proapoptotic Bax gene expression. Histological findings of liver tissues verified the biochemical and molecular data. The study clarified some of the molecular mechanisms by which NOC protects the liver against the synergistic toxic effect of ?-irradiation and CCl4.


Cite this article:
Enas A. Mohamed, Ahmed M. Elbarbary, Nashat M. M. Abd alaty, Nashwa K. Ibrahim, Mahmoud M. Said, Ahmed M. Salem. The Beneficial Effect of Nanostructured Oligochitosan against Gamma Irradiation and/or Carbon Tetrachloride-Induced Hepatic Injury in Rats. Research Journal of Pharmacy and Technology. 2021; 14(4):2243-7. doi: 10.52711/0974-360X.2021.00398

Cite(Electronic):
Enas A. Mohamed, Ahmed M. Elbarbary, Nashat M. M. Abd alaty, Nashwa K. Ibrahim, Mahmoud M. Said, Ahmed M. Salem. The Beneficial Effect of Nanostructured Oligochitosan against Gamma Irradiation and/or Carbon Tetrachloride-Induced Hepatic Injury in Rats. Research Journal of Pharmacy and Technology. 2021; 14(4):2243-7. doi: 10.52711/0974-360X.2021.00398   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-4-74


REFERENCES:
1. Acharya K, Giri S, Biswas G. Comparative study of antioxidant activity and nitric oxide synthase activation property of different extracts from Rhododendron arboreum flower. International Journal of Pharmtech Research (2011) 3(2):757-762.
2. Abdelhalim MAK, Moussa SAA. The biochemical changes in rats’ blood serum levels exposed to different -radiation doses. African Journal of Pharmacy and Pharmacology (2013) 7 (15):785-792. doi: 10.5897/AJPP2013.3434.
3. Hefnawy HTM, Ramadan MF. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats. Asian Pacific Journal of Tropical Medicine (2013) 3:277-285. doi: 10.1016/S2222-1808(13)60070-5
4. Abdel-Kader MS, Abulhamd AT, Hamad AM, Alanazi AH, Ali R et al. Evaluation of the hepatoprotective effect of combination between hinoki flavone and Glycyrrhizin against CCl4 induced toxicity in rats. Saudi Pharmaceutical Journal (2018) 26:496-503. doi: 10.1016/j.jsps.2018.02.009.
5. Rahman MM, Muse AY, Khan DMIO, Ahmed IH, Subhan N et al. Apocynin prevented inflammation and oxidative stress in carbon tetra chloride induced hepatic dysfunction in rats. Biomedicine and Pharmacotherapy (2017) 92:421-428. doi: 10.1016/ j.biopha.2017.05.101.
6. Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. Journal of Cellular and Molecular Medicine (2016) 21(6):1046-1057. doi: 10.1111/jc.13048.
7. Lin YC, Cheng KM, Huang HY, Chao PY, Hwang JM et al. Hepatoprotective activity of Chhit-Chan-Than extract powder against carbon tetrachloride-induced liver injury in rats. Journal of Food and Drug Analysis (2014) 22(2):220-229. doi.org/10.1016/j.jfda.2013.09.012.
8. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules (2018) 1(109):273 286. doi:10.1016/j.ijbiomac.2017.12.078.
9. Jiang Z, Li Z, Zhang W, Yang Y, Han B, et al. Dietary natural n-acetyl-d-glucosamine prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. Molecules (2018). 23:2302-2311. doi: 10.3390/molecules23092302.
10. Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters (2018) 16:101-112.
11. Jiang Z, Li H, Qiao J, Yang Y, Wang Y, et al. Potential analysis and preparation of chitosan oligosaccharides as oral nutritional supplements of cancer adjuvant therapy. International Journal of Molecular Sciences (2019) 20: 920-929. doi: 10.3390/ijms20040920 
12. Comblain F, Rocasalbas G, Gauthier S, Henrotin Y. Chitosan: A promising polymer for cartilage repair and viscosupplementation. Biomedical Materials and Engineering (2017) 28(1):209-215. doi: 10.3233/BME-171643.
13. Salomon C, Goycoolea FM, Moerschbacher B. Recent trends in the development of chitosan-based drug delivery systems. AAPS Pharmaceutical Sciences and Technology (2017)18(4):933-935. doi: 10.1208/s12249-017-0764-7.
14. Li CW, Wang Q, Li J, Hu M, Shi SJ et al. Silver nanoparticles/chitosan oligosaccharide/poly (vinyl alcohol) nanofiber promotes wound healing by activating TGFbeta1/Smad signaling pathway. International Journal of Nanomedicine (2016) 11: 373-386. doi: 10.2147/IJN 
15. Xie C, Xin W, Long C, Wang Q, Fan Z et al. Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Veterinary Research. (2016) 12:243-250. 
16. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics (2017) 9(4):53-69. doi: 10.3390/pharmaceutics 9040053.
17. Zhang E, Xing R, Liu S, Qin Y, Li K et al. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydrate Polymer (2019) 222:115004. doi: 10.1016/j.carbpol.2019.115004
18. Jeon Y, Kim S. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydrate Polymer (2000) 41:133-141. doi: 10.1016/S0144-8617(99)00084-3
19. Wang S, Huang Q, Wang Q. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydrate Research (2005) 340:1143-1147.
20. Elbarbary AM, Mostafa TB. Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit. Carbohydrate Polymer (2014) 104:109-117. doi.org/10.1016/j.carbpol.2014. 01.021
21. Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan University Journal (2003)11(3):51-66.
22. Elbarbary AM, El-Sawy NM, Hegazy EA. Antioxidative properties of irradiated chitosan/vitamin C complex and their use as food additive for lipid storage. Journal of Applied Polymer Science (2015) 132:42105-42113. doi.org/10.1002/app.42105. 
23. Yang H, Zhu P, Peng C, Ma S, Zhu Q et al. Viscometric study of polyvinyl alcohol in NaCl/water solutions ranged from dilute to extremely dilute concentration. European Polymer Journal (2001) 37:1937-1942.
24. Yamaguchi T, Akamura H, Matoba T, Terao J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry (1998) 62:1201-1204.
25. Canadian Council for Animal Care. Guide to the Care and Use of Experimental Animals. (1993) Vol. 1, second ed. Ottawa (Canada): Canadian Council for Animal Care.
26. El-Denshary SE, Aljawish A, El-Nekeety AA, Hassan SN, Saleh HR et al. Possible synergistic effect and antioxidant properties of chitosan nanoparticles and quercetin against carbon tetrachloride-induced hepatotoxicity in rats. Soft Nano Letters (2015) 5:36-51. doi: 10.4236/snl.2015.52005.
27. Kamboja JK, Ranaa SV, Vahipheib K, Dhawan DK. Wheat grass mediated modulation of histoarchitecture and antioxidant status offers protection against carbon tetrachloride induced hepatotoxicity. International Journal of Health Sciences and Research (2015) 5: 2249-9571.
28. Niehaus WG, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. European Journal of Biochemistry (1968) 6:126-130.
29. Reznick AZ, Packer L. Oxidative damage to protein: spectrophotometric method for carbonyl assay. Methods of Enzymology (1994) 233:357-363. doi.org/10.1016/S0076-6879(94)33041-7.
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT. Methods (2001) 25:402-408.
31. Curcio M, Puoci F, Iemma F, Parisi OI, Cirillo G et al. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal of Agricultural and Food Chemistry (2009) 57(13):5933-5938. doi: 10.1021/jf900778u.
32. El-Sawy NM, Abd El-Rehim HA, Hegazy EA, Elbarbary AM. Preparation of low molecular weight natural polymers by gamma-radiation and their growth promoting effect on Zea Maize plants. Chemistry and Materials Research (2013) 3:66-78.
33. Ulanski P, Rosiak JM. Preliminary studies on radiation-induced changes in chitosan. Radiation Physics and Chemistry (1992) 39:53-57.
34. Abd El-Rehim HA, Zahran DA, El-Sawy NM, Hegazy EA, Elbarbary AM. Gamma irradiated chitosan and its derivatives as antioxidants for minced chicken. Bioscience, Biotechnology, and Biochemistry (2015) 79(6): 997-1004.
35. Yang X, Chen L, Han B, Yang X, Duan H. Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers. Journal of Polymer Sciences (2010) 51:2533-2539.
36. El Shawi OE, Abd El-Rahman SS, Hameed MA. Reishi mushroom attenuates hepatic inflammation and fibrosis induced by irradiation enhanced carbon tetrachloride in rat model. Journal of Biosciences and Medicine (2015) 3:24-38.
37. Dai C, Xiao X, Li D, Tun S, Wang Y et al. Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis. Cell Death and Disease (2018) 9(12):1164. doi: 10.1038/s41419-018-1136-2.
38. Ezz MK, Ibrahim NK, Said MM, Farrag MA. The beneficial radioprotective effect of tomato seed oil against gamma radiation-induced damage in male rats. Journal of Dietary Supplements (2018) 15:923-938. doi.org/10.1080/19390211.2017.1406427.
39. El-haskoury R, Al-Waili N, Kamoun Z, Makni M, Al-Waili H et al. Antioxidant activity and protective effect of carob honey in CCl4-induced kidney and liver injury. Archives of Medical Research (2018) 49(5):306-313. doi: 10.1016/ j.arcmed.2018.09.011.
40. Shirazi A, Mihandoost E, Ghobadi G, Mohseni M, Ghazi-Khansari M. Evaluation of radioprotective effect of melatonin on whole body irradiation induced liver tissue damage. Cell Journal (2013) 14(4):292-297.
41. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology (2004) 127:35-50. doi:10.1053/ j.gastro.2004.09.014.
42. Catrysse L, van Loo G. Inflammation and the metabolic syndrome: The tissue-specific functions of NFB. Trends in Cell Biology (2017) 27(6):417-429. doi:10.1016/ j.tcb.2017.01.006.
43. Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D et al. Portrait of inflammatory response to ionizing radiation treatment. Journal of Inflammation (2015) 12:14-18. doi: 10.1186/s12950-015-0058-3.
44. Wu J, Yang CL, Sha YK, Wu Y, Liu ZY et al. Koumine alleviates lipopolysaccharide-induced intestinal barrier dysfunction in IPEC-J2 cells by regulating Nrf2/NF-κB pathway. American Journal of Chinese Medicine (2020). 48(1):127-142. doi: 10.1142/ S0192415X2050007X.
45. Alkhalf MI, Khalifa FK. Blueberry extract attenuates c-radiation-induced hepatocyte damage by modulating oxidative stress and suppressing NF-κ in male rats. Saudi Journal of Biological Sciences (2018) 25(7):1272-1277. doi: 10.1016/j.sjbs.2018.07.002.
46. Al-Rasheed NM, Fadda LM, Al-Rasheed NM, Ali HM, Yacoub HI. Down-regulation of NFB, Bax, TGF-β, Smad-2mRNA expression in the livers of carbon tetrachloride treated rats using different natural antioxidants. Brazilian Archives of Biology and Technology (2016) 59:505-553. doi.org/10.1590/1678-4324-2016150553.
47. Lin H, Wang Z, Shen J, Xu J, Li H. Intravenous anesthetic ketamine attenuates complete Freund’s adjuvant-induced arthritis in rats via modulation of MAPKs/NF-B. Inflammation Research (2018) 68:147-155. doi: 10.1007/s00011-018-1202-3.
48. El-Shorbagy HM. Molecular and anti-oxidant effects of wheat germ oil on CCl4-induced renal injury in mice. Journal of Applied Pharmaceutical Science (2017) 7(5):94-102. doi: 10.7324/ JAPS.2017.70517
49. Abu-Khudir R, Habieb ME, Mohamed MA, Hawas AM, Mohamed TM. Anti-apoptotic role of spermine against lead and/or gamma irradiation-induced hepatotoxicity in male rats. Environmental Science and Pollution Research (2017). 24:24272-24283.
50. Meimandi-Parizi A, Oryan A, Bigham-Sadegh A, Sayahi E. Effects of chitosan scaffold along with royal jelly or bee venom in regeneration of critical sized radial bone defect in rat. Iranian Journal of Veterinary Research (2018) 19:246-254.
51. Ma L, Shen CA, Gao L, Li DW, Shang YR et al. Anti-inflammatory activity of chitosan nanoparticles carrying NF-κB/p65 antisense oligonucleotide in RAW264.7 macrophage stimulated by lipopolysaccharide. Colloids and Surfaces B: Biointerfaces (2016) 1:297-306. doi: 10.1016/ j.colsurfb.2016.02.031
52. Tu J, Xu Y, Xu J, Ling Y, Cai Y. Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-κB pathway in Caco-2 cells. International Journal of Biological Macromolecules (2016) 86:848-856. doi: 10.1016/ j.ijbiomac.2016.02.015.
53. Kadry MO, Abdel-Megeed RM, El-Meliegy E, Abdel-Hamid AZ. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α signaling pathways play an ambitious role in chitosan nanoparticles cancer therapy. Toxicological Report (2018) 5:723-727.

Recomonded Articles:

Author(s): Nimbalkar V.V., Pansare P.M., Nishane B.B.

DOI: 10.5958/0974-360X.2015.00310.8         Access: Open Access Read More

Author(s): Ravindranath S. Misal, Vishawas R. Potphode, Vijay R. Mahajan

DOI: 10.5958/0974-360X.2017.00218.9         Access: Open Access Read More

Author(s): Niharika, Navneet Verma

DOI: 10.5958/0974-360X.2016.00182.7         Access: Open Access Read More

Author(s): Sonte Sushmitha, Sedimbi Revathi Priyanka, L. Mohan Krishna, M. Srinavasa Murthy

DOI: Not Available         Access: Open Access Read More

Author(s): Hayat M. Mukhtar, Vandna Kalsi

DOI: 10.5958/0974-360X.2018.00395.5         Access: Open Access Read More

Author(s): Muhammad Hamdan, Noorhamdani AS, Masruroh Rahayu, Mohammmad Hasan Machfoed

DOI: 10.5958/0974-360X.2019.01020.5         Access: Open Access Read More

Author(s): Mythili. L, GNK. Ganesh, C. Monisha, Kayalvizhi. R

DOI: 10.5958/0974-360X.2019.00426.8         Access: Open Access Read More

Author(s): Som K. Madhvi, Manik Sharma, Javaid Iqbal, Mohd Younis

DOI: 10.5958/0974-360X.2019.00785.6         Access: Open Access Read More

Author(s): Kishore Manoharan, Navya Ajitkumar Bhaskaran, Lalit Kumar

DOI: 10.5958/0974-360X.2019.01070.9         Access: Open Access Read More

Author(s): Martin Ebenezer. C, Goh C.X.H, Jemeela. S, Manoj Abraham. M, Jabbar. M. S

DOI: 10.5958/0974-360X.2019.00283.X         Access: Open Access Read More

Author(s): Pande S. D., Wagh A.S., Bhagure L.B., Patil S.G., Deshmukh A.R.

DOI: 10.5958/0974-360X.2015.00070.0         Access: Open Access Read More

Author(s): Vaseeha Banu T.S., Sandhya K.V., K.N. Jayaveera

DOI: Not Available         Access: Open Access Read More

Author(s): Sandesh More, Javed Mirza, Nanasaheb Kale, Mayur Gandhi, Rakesh Chaudhari

DOI: Not Available         Access: Open Access Read More

Author(s): Karpagam T, Jannathul Firdous, Revathy, Shanmuga Priya, Varalakshmi B, Gomathi S, Geetha S, Noorzaid Muhamad

DOI: 10.5958/0974-360X.2019.00360.3         Access: Open Access Read More

Author(s): Ravi K. Barde, Minal R. Narkhede, V.R. Gudsoorkar, Rahul K. Amrutkar, Prashant S. Walke

DOI: Not Available         Access: Open Access Read More

Author(s): Sajid Ali, Maryam Shabbir, Nabeel Shahid

DOI: 10.5958/0974-360X.2015.00019.0         Access: Open Access Read More

Author(s): Loveleen Preet Kaur, Rajeev Garg, GD Gupta

DOI: Not Available         Access: Open Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags