REFERENCES:
1. George MG, Fischer L, Koroshetz W, Bushnell C, Frankel M, Foltz J, Thorpe PG. CDC Grand Rounds: Public Health Strategies to Prevent and Treat Strokes. MMWR Morb Mortal Wkly Rep 2017; 66(18): 479-481. DOI: 10.15585/mmwr.mm6618a5.
2. Shukla V, Shakya A. K, Perez-Pinzon M. A and Dave K. R. Cerebral ischemic damage in diabetes: an inflammatory perspective. Journal of neuroinflammation 2017; 14(1): 21. DOI:10.1186/s12974-016-0774-5.
3. Chen R, Ovbiagele B, Feng W. Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. The American journal of the medical sciences 2016; 351(4): 380–386. DOI: 10.1016/j.amjms.2016.01.011.
4. Maiocchi S, Alwis I, Wu MCL, Yuan Y, Jackson SP. Thromboinflammatory Functions of Platelets in Ischemia-Reperfusion Injury and Its Dysregulation in Diabetes. Semin Thromb Hemost 2018; 44(2): 102-13.
5. Canbaz S, Duran E. Ischaemia-reperfusion studies and diabetes mellitus. Br J Anaesth 2003; 91: 158-9.
6. Ramírez-Espinosa JJ, Saldaña-Ríos J, García-Jiménez S, Villalobos-Molina R, Ávila-Villarreal G, Rodríguez-Ocampo AN, Bernal-Fernández G, Estrada-Soto S. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice. Molecules 2017; 28: 23(1): pii: E67. DOI: 10.3390/molecules23010067.
7. Veerappan R, Malarvili T. Chrysin Pretreatment Improves Angiotensin System, cGMP Concentration in L-NAME Induced Hypertensive Rats. Indian J Clin Biochem 2019; 4(3): 288-295. DOI: 10.1007/s12291-018-0761-y.
8. Sun LP, Chen AL, Hung HC, Chien YH, Huang JS, Huang CY, Chen YW, Chen CN. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 2012;60(47):11748-58. DOI: 10.1021/jf303261r.
9. Sharma P, Kumari A, Gulati A, Krishnamurthy S, Hemalatha S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr Neurosci 2019;22(8): 569-577. doi: 10.1080/1028415X.2017.1418786.
10. Orsu P, Murthy BV, Akula A. Cerebroprotective potential of resveratrol through anti-oxidant and anti-inflammatory mechanisms in rats. J Neural Transm 2013;120(8):1217-23. DOI: 10.1007/s00702-013-0982-4.
11. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat Protoc 1(6) (2006) 3159-65.
12. Okhawa H, Ohishi N, Yagi K. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction, Anal Biochem 1979;95: 351–8. DOI: 10.1016/0003-2697(79)90738-3.
13. El Khashab IH, Abdelsalam RM, Elbrairy AI, Attia AS. Chrysin attenuates global cerebral Ischemic Reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2019; 112:108619. DOI: 10.1016/j.biopha.2019.108619.
14. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Ind J Bio Chem Biophys 1984; 21:130-2.
15. Aebi H. Catalase: Methods in enzymatic analysis Vol. II 1974; (ed. H.U. Bergmer) 673-84.
16. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J. Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol. Immunol 2009; 6: 207-13.
17. Saito K, Suyama K, Nishida K, Sei Y, Basile AS. Early increases in TNF-alpha, IL-6 and IL-1 beta following transient cerebral ischemia in gerbil brain. Neurosci Lett 1996; 206: 149–2.
18. Wang X1, Luo Y, Sun H, Feng J, Ma S, Liu J, Huang B. Dynamic expression changes of Bcl-2, Caspase-3 and Hsp70 in middle cerebral artery occlusion rats. Brain Inj 2015; 29(1): 93-7. DOI: 10.3109/02699052.2014.945958.
19. Wenting Z, Aiguo M. MicroRNA-124 expression in the brains of rats during early cerebral ischemia and reperfusion injury is associated with cell apoptosis involving STAT3. Exp Ther Med 2019;17(4): 2870–2876. DOI: 10.3892/etm.2019.7220.
20. Sundaram TK, Cazzulo JJ, Kornberg HL. Synthesis of pyruvate carboxylase from its apoenzyme and (+)-biotin in Bacillus stearothermophilus. Mechanism and control of the reaction. Biochem J 1971; 122(5): 663-9.
21. Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, Neuroinflammation, and Neurodegeneration in postnatal rat brain. J Neuroinflammation 2016; 13 (1): 286.
22. Khan M, Siphon B, Jatana M, Giri S et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 2004; 76: 519-7.
23. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009;7: 97.
24. Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem Int 2015; 90: 224-31. DOI: 10.1016/j.neuint.2015.09.006.
25. Goes ATR, Jesse CR, Antunes MS, Lobo Ladd FV, Lobo Ladd AAB, Luchese C, Paroul N, Boeira SP. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279:111-120. DOI: 10.1016/j.cbi.2017.10.019.
26. Guo B, Zheng C, Cai W, Cheng J, Wang H1, Li H, Sun Y, Cui W, Wang Y, Han Y, Lee SM, Zhang Z. Multifunction of Chrysin in Parkinson's Model: Anti-Neuronal Apoptosis, Neuroprotection via Activation of MEF2D, and Inhibition of Monoamine Oxidase-B. J Agric Food Chem 2016; 64(26):5324-33. DOI: 10.1021/acs.jafc.6b01707.
27. Prabhakar O. Cerebroprotective effect of resveratrol through antioxidant and anti-inflammatory effects in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386(8): 705-10. doi: 10.1007/s00210-013-0871-2.
28. Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018; 145:187-196. doi: 10.1016/j.phytochem.2017.09.016.
29. Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substance. Biomed Pharmacother 2017; 92: 998-1009.
30. Anne Lejay, Fei Fang, Rohan John, Julie A.D. Van, Meredith Barr, Fabien Thaveau et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. Journal of Molecular and Cellular Cardiology 2016; 91:11-22.
31. Neven Zarkovic. Antioxidants and Second Messengers of Free Radicals. Antioxidants 2018; 7(1): 158.
32. O.M. Ighodaro, O.A. Akinloye. First line defense antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defense grid. Alexandria Journal of Medicine 2018; 54(4): 287-293.
33. Saima Naz, Muhammad Imran, Abdur Rauf, Ilkay Erdogan Orhan, Mohammad Ali Shariati, Iahtisham-Ul-Haq et al. Chrysin: Pharmacological and therapeutic properties. Life Sciences 2019; 235: 116797.
34. Gouwy M, Struyf S, Proost P, Van Damme J. Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev 2005; 16: 561-80.
35. Yasuda Y, Shimoda T, Uno K et al. Temporal and sequential changes of glial cells and cytokine expression during neuronal degeneration after transient global Ischemia in rats. J Neuroinflammation 2011; 8 :70.
36. Tangming Peng, Yizhou Jiang, Mohd Farhan, Philip Lazarovici, Ligang Chen, and Wenhua Zheng. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol 2019; 10: 204. doi: 10.3389/fphar.2019.00204.
37. Eman M. Mantaway et al. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci Rep 2017; 2: 4795.
38. Mao Nakayama. Neuroprotective effects of flavonoids on hypoxia, glutamate-and oxidative stress–induced retinal ganglion cell death. Mol Vis 2011; 17: 1784-1793