Author(s): Hayder Kadhim Drais, Ahmed Abbas Hussein

Email(s): Email ID Not Available

DOI: 10.5958/0974-360X.2021.00219.5   

Address: Hayder Kadhim Drais1, Ahmed Abbas Hussein2
1Ministry of Health and Environment, Babylon Health Directorate, Babylon, Iraq.
2Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq.
*Corresponding Author

Published In:   Volume - 14,      Issue - 3,     Year - 2021


ABSTRACT:
Since the birth of humanity to this day, there are many epidemics and deadly diseases that people are exposed to it. Many studies show the use of myrtle and peppermint essential oils (EOs) which has proven to be very effective against many viral, bacterial and fungal diseases. Currently, there is a fierce attack from a deadly virus that causes severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease. The lipid-polymer hybrid nanocarriers dispersion system (F1-F6) was prepared by a new microwave method. The thermodynamic outcomes indicate that all the formulations show an excellent physical stability. The average colloidal carrier size was within nano size diameter. The polydispersity index (PDI) was from (0.011 to 0.03). The absolute values of zeta potential was (31.1mV to 33.4mV). The viscosity data of nanocarrier systems indicate non-Newtonian pseudoplastic rheological properties of prepared F1-F6. The selected colloidal dispersion was F6 due to contain a greater loading quantity of myrtle and peppermint EOs. This research aims to prepare a lipid-polymer hybrid nanocarrier system to be given by nebulization through the pulmonary route to achieve the rapid therapeutic efficacy of myrtle and peppermint EOs using a novel microwave method.


Cite this article:
Hayder Kadhim Drais, Ahmed Abbas Hussein. Design and Preparation Lipid Polymer Hybrid Nanocarrier as Pulmonary Dispersion System Using a Novel Microwave Method. Research J. Pharm. and Tech 2021; 14(3):1233-1237. doi: 10.5958/0974-360X.2021.00219.5


REFERENCES:
1.    Gonzalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L: A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 2003; 148(11): 2207–2235.
2.    Weiss SR, Navas-Martin S: Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev.2005; 69(4): 635–664.
3.    Schuhmacher, A.; Reichling, J.; Schnitzler, P. Virucidal e ect of eucalyptus oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003; 10: 504–510.
4.    4.Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules. 2019; 24:2130.
5.    Alipour G, Dashti S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res. 2014; 28(8): 1125-1136.
6.    Brochot, A, Guillot, A, Haddioui, L, Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiology Open. 2017; 6:459.
7.    Bassole, I. H., and Juliani, H. R. Essential oils in combination and their antimicrobial properties. Molecules. 2012; 17: 3989–4006.
8.    Friedman, M., Henika, P. R., and Mandrell, R. E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection. 2002; 65: 1545–1560.
9.    Raeiszadeh M, Pardakhty A, Sharififar F, Mehrabani M, Nejat-Mehrab-Kermani H, Mehrabani M. Iran J Pharm Res. 2018;17(3):804-817.
10.    Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: mini review. Curr Nanomedicine. 2018; 8:88–99.
11.    Mashaghi, S.; Jadidi, T.; Koenderink, G.; Mashaghi, A. Lipid Nanotechnology. Int. J. Mol. Sci. 2013; 14: 4242-4282.
12.    Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6): 588-599.
13.    Chen, M.C.; Mi, F.L.; Liao, Z.X.; Hsiao, C.W.; Sonaje, K.; Chung, M.F.; Hsu, L.W.; Sung, H.W. Recent advances in chitosan-polymer nanoparticles for oral delivery of macromolecules. Adv. Drug Deliv. Rev. 2013; 65: 865–879.
14.    Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017; 9: 53.
15.    Dustgani A, Vasheghani Farahani E, Imani M. Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iranian J Pharmaceutical Sci. 2008; 4: 111-4.
16.    Islam, N.; Ferro, V. Recent Advances in Chitosan-Polymer Nanoparticulate Pulmonary Drug Delivery. Nanoscale. 2016; 14341–14358.
17.    Zhi, W., Wang, L. and Hu, X. Recent advances in the effects of microwave radiation on brains. Military Med Res. 2017; 4: 29.
18.    Roer, T.G. Microwave Electronic Devices. Springer Science and Business Media. 2012; 1–12.
19.    Resources for You (Radiation-Emitting Products)". US Food and Drug Administration home page. U.S. Food and Drug Administration. 2014.
20.    Bhan Meenu. Applications of microwaves in pharmaceutical processes. International Journal of Academic Research and Development.2017; 2 (1):11-13.
21.    Roer, T.G. Microwave Electronic Devices. Springer Science and Business Media. 2012; 1–12.
22.    S Saranya, N Chandrasekaran, Amitava Mukherjee. Antibacterial activity of eucalyptus oil nanoemulsion against Proteus mirabilis. Int J Pharm Pharm Sci 2012; 4:668-71.
23.    Drais Hayder Kadhim, Hussein Ahmed Abbas. Formulation and characterization of carvedilol nanoemulsion oral liquid dosage form. International Journal of Pharmacy and Pharmaceutical Sciences, 2015 :7 (12) 209-216.
24.    Sweta Tyagi, A Panda, Sagufta Khan. Formulation and evaluation of diclofenac diethylamine microemulsion incorporated in hydro gel. World J Pharm Res. 2012; 1:1258-319.
25.    Chhabra Gulshan, Chuttani Krishna, Mishra Anil K, Pathak Kamla. Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug Dev Ind Pharm.2011; 37:907–16.
26.    Vijaya R, Kumar S Suresh, Kamalakannan S. Preparation and in vitro evaluation of miconazole nitrate nanoemulsion using tween 20 as a surfactant for effective topical/ transdermal delivery. J Chem Pharm Sci. 2015; 8:92-8.
27.    Bahari, L.A.; Hamishehkar, H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv. Pharm. Bull. 2016; 6: 143.
28.    Sadat, S.M.; Jahan, S.T.; Haddadi, A. Effects of size and surface charge of polymeric nanoparticles on in vitroand in vivo applications. J. Biomater. Nanobiotechnol. 2016; 7:91.
29.    Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018; 10:57.
30.    Mishra, P.C., Mukherjee, S., Nayak, S.K. et al. A brief review on viscosity of nanofluids. Int Nano Lett. 2014; 4:109–120.

Recomonded Articles:

Author(s): Kumkum Sarangdevot, Bhawani Singh Sonigara, Amul Mishra, K. C. Gupta, Surbhi Sharma

DOI: Not Available         Access: Open Access Read More

Author(s): Sahu Sudeep, Dey Tathagata, Khaidem Somila, Y Jyothi

DOI: Not Available         Access: Open Access Read More

Author(s): Atul Arvind Bodkhe, Ramandeep Singh Bedi, Ashutosh Upadhayay, Mohan K. Kale

DOI: 10.5958/0974-360X.2018.00998.8         Access: Open Access Read More

Author(s): Gayathiri. K, Gopi Sudheer Kumar. J, Kavimani. S

DOI: 10.5958/0974-360X.2017.00779.X         Access: Open Access Read More

Author(s): Shruthi Chandrasekaran, Geetha. R.V.

DOI: Not Available         Access: Open Access Read More

Author(s): M. Vaishali

DOI: Not Available         Access: Open Access Read More

Author(s): Sayani Bhattacharyya, Hemant Adhikari, Durgaprasad Regmi

DOI: 10.5958/0974-360X.2019.00699.1         Access: Open Access Read More

Author(s): Vidya Viswanad, Aswathy Rajeev, Priyanka S., Raheela A. V.

DOI: Not Available         Access: Open Access Read More

Author(s): Thiruchelvi. R, K. Kavitha, K. Shankari

DOI: 10.5958/0974-360X.2020.00444.8         Access: Closed Access Read More

Author(s): Manish Devgun, Arun Nanda, SH Ansari, SK Swamy

DOI: Not Available         Access: Open Access Read More

Author(s): Simmy Gupta, Jyoti Prabha Bishnoi, Rajat Singh

DOI: 10.5958/0974-360X.2019.00397.4         Access: Open Access Read More

Author(s): Mansi Chitkara, Rakesh K. Sindhu, Inderbir Singh, Deepak Kumar, Inderjit Singh Sandhu, Sandeep Arora

DOI: 10.5958/0974-360X.2020.00345.5         Access: Closed Access Read More

Author(s): Arti Majumdar, Nidhi Dubey, Nitin Dubey

DOI: 10.5958/0974-360X.2020.00270.X         Access: Closed Access Read More

Author(s): Richie Bhandare, Vaishali Londhe, Akram Ashames, Nadeem Shaikh, Sham Zain Alabdin

DOI: 10.5958/0974-360X.2020.01043.4         Access: Closed Access Read More

Author(s): Swarupananda Mukherjee, Subhasis Maity, Bijaya Ghosh, Arijit Mondal

DOI: 10.5958/0974-360X.2020.00589.2         Access: Closed Access Read More

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags