Author(s): Deepak Jaitak, Nacchammai K., Pavithra K., Keerthi G. S. Nair, Sathesh Kumar S.


DOI: 10.5958/0974-360X.2021.00311.5   

Address: Deepak Jaitak, Nacchammai K., Pavithra K., Keerthi G. S. Nair, Sathesh Kumar S.*
Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai-600117, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 3,     Year - 2021

Nanoscale drug delivery system is one of the best methods because they are capable to enhance the drug accumulation at the site of action, decrease in off-target effects and help to increase the drug delivery in the cancer. The utilization of the drug is better as compared to the other methods. In these days, polymers are being extensively used to increase the bioavailability of drug molecules and to deliver the drug at specific site. Polymers are attached with drugs are administered in the body, so the leading aim of localized drug delivery to the tumor cell by a controlled release of drugs over a long time period. The polymeric nanoparticles have high anti-tumor activity to wipe out the cancer but very minimum toxicity to the other normal cells. In this review we discussed about method of preparation of nanoparticle like Single or double-emulsion-solvent evaporation method, Nanoprecipitation, Emulsification solvent diffusion [ESD] method, Dialysis, Supercritical fluid technique (SCF). Mechanism of action of polymeric nanoparticles made up of PEG, PLGA, HPMA, CHITOSAN, PLA, PCL on cancer cells.

Cite this article:
Deepak Jaitak, Nacchammai K., Pavithra K., Keerthi G. S. Nair, Sathesh Kumar S. Polymeric Nanoparticles for Anti-Cancer Treatment- A Review of its Mechanisms. Research J. Pharm. and Tech 2021; 14(3):1747-1754. doi: 10.5958/0974-360X.2021.00311.5

Deepak Jaitak, Nacchammai K., Pavithra K., Keerthi G. S. Nair, Sathesh Kumar S. Polymeric Nanoparticles for Anti-Cancer Treatment- A Review of its Mechanisms. Research J. Pharm. and Tech 2021; 14(3):1747-1754. doi: 10.5958/0974-360X.2021.00311.5   Available on:

1.    F. Alexis, et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol. Pharm. 2008; 5(4): 505–515.
2.    L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev. 2004; 56(11): 1649–1659.
3.    M.F. Zambaux, et al., Preparation and characterization of protein C-loaded PLA nanoparticles, J. Control. Release 1999; 60(2–3): 179–188.
4.    Natarajan Jawahar, Polymeric nanoparticles for drug delivery and targeting: A comprehensive review, International Journal of Health and Allied Sciences • Vol. 1 • Issue 4 • Oct-Dec 2012,1-2.
5.    Zambaux MF, Bonneaux F, Gref R, et al (1998). Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J Control Release, 50, 31-40
6.    E. Sah, H. Sah, Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent, J. Nanomater. 2015 (2015) 22
7.    T. Govender, S. Stolnik, M.C. Garnett, L. Illum, S.S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, J. Control. Release 57 (1999) 171–185.
8.    D’Mello SR, Das SK, Das NG. Polymeric Nanoparticles for Small-Molecule Drugs: Biodegradation of Polymers and Fabrication of Nanoparticles. Drug Delivery Nanoparticles Formulation and Characterization: 16.
9.    J. Allouche, Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods, in: R. Brayner, F. Fiévet, T. Coradin (Eds.), Nanomaterials: A Danger or a Promise? Springer, London 2013, pp. 27–74.
10.    M. Kostag, S. Köhler, T. Liebert, T. Heinze, Pure cellulose nanoparticles from Trimethylsilyl cellulose, Macromol. Symp. 294 (2010) 96–106.
11.    C. Pinto Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomed. Nanotechnol. Biol. Med. 2 (2006) 8–21.
12.    O.R. Davies, A.L. Lewis, M.J. Whitaker, H. Tai, K.M. Shakesheff, S.M. Howdle, Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering, Adv. Drug Deliv. Rev. 60 (2008) 373–387.
13.    Bhasker. S, Sandeep. G, Ranganath YS. Future of cancer therapy-COX-2 Inhibitors: A Review. Research Journal of Pharmacy and Technology. 2009.
14.    Patel, A., Cholkar, K., Mitra, A.K., 2014. Recent developments in protein and peptide parenteral delivery approaches. Ther Deliv 5, 337-365.
15.    Hirenkumar K. Makadia, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers 2011,1380-1381.
16.    Esmaeili, F.; Ghahremani, M.H.; Esmaeili, B.; Khoshayand, M.R.; Atyabi, F.; Dinarvand, R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int. J. Pharm. 2008, 349, 249–255.
17.    N. Kamaly, Z. Xiao, P.M. Valencia, A.F. Radovic-Moreno, O.C. Farokhzad, Targeted polymeric therapeutic nanoparticles: design, development and clinical translation, Chem. Soc. Rev. 41 (2012) 2971–3010
18.    C.H. Hsu, Z. Cui, R.J. Mumper, M. Jay, Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors, AAPS Pharm Sci Tech 4 (2003), E32
19.    D. Cosco, D. Paolino, F. De Angelis, F. Cilurzo, C. Celia, L. Di Marzio, D. Russo, N. Tsapis, E. Fattal, M. Fresta, Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response, Eur. J. Pharm. Biopharm. 89 (2015) 30–39.
20.    G.-R. Tan, S.-S. Feng, D.T. Leong, The reduction of anti-cancer drug antagonism by the spatial protection of drugs with PLA–TPGS nanoparticles, Biomaterials 35 (2014) 3044–3051.
21.    D Saha, D Mridha, S Mondal, M Jana, S Kayal. Organoselenium as a Cancer Chemopreventive Agent against Carcinogenesis.. Research Journal of Pharmacy and Technology. ‎2011
22.    X. Wang, Y. Wang, K. Wei, N. Zhao, S. Zhang and J. Chen, Drug distribution within poly(ε-caprolactone) microspheres and in vitro release, J Mater Process Technol 209 (2009), pp. 348–354.
23.    J.V. Koleske, Blends containing poly(ε-caprolactone) and related polymers, in Polymer Blends, D.. Paul and S. Newman, eds., Academic Press, New York, 1978, pp. 369–389.
24.    E. Díaz, I. Sandonis and M.B. Valle, In vitro degradation of poly(ε-caprolactone)/nHA composites, J Nanomater 2014 (2014), pp. 1–8.
25.    M. Abedalwafa, F. Wang, L. Wang and C. Li, Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: A review, Rev Adv Mater Sci 34 (2013), pp. 123–140
26.    R. Suresh Kumar, Subhashish Debnath, GNK Ganesh, L Raju, MK Samantha, B Suresh. Chitosan Nano Particles by Ionotropic Gelation Containing L-Arginine. Research Journal of Pharmacy and Technology. 2009
27.    Z. S. Wen, Y. L. Xu, X. T. Zou, and Z. R. Xu, “Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice,” Marine Drugs, vol. 9, no. 6, pp. 1038–1055, 2011.
28.    Alaspure R.N., Nagdeve S.R. Isolation of Active Constituent of Acorus calamus Rhizomes Extract and Evaluation of its Anti-cancer Activity. Research Journal of Pharmacy and Technology . ‎2011
29.    Xian-bin Kong, Polyethylene glycol as a promising synthetic material for repair of spinal cord injury, PMC,2017,3-4.
30.    Luo J, Borgens R, Shi R. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neuroehem. 2002; 83: 471–480.
31.    Shi R, Borgens RB, Blight AR. Functional reconnection of severed mammalian spinalcord axons with polyethylene glycol. J Neurotrauma. 1999; 16: 727–738.
32.    Jiyuan Yang, The light at the end of the tunnel—second generation HPMA conjugates for cancer treatment, Current Opinion in Colloid and Interface Science,2017,31-32.
33.    Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015; 91: 3–6.
34.    Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, et al. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 1998; 89: 307–14.
35.    Excellent study that highlights the effect of molecular weight of HPMA polymer-drug conjugates on extravasation and accumulation in tumors.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available