Author(s): Shubhrat Maheshwari, Ritesh Kumar Tiwari, Lalit Singh

Email(s): shubhrat1996@gmail.com

DOI: 10.5958/0974-360X.2021.00206.7   

Address: Shubhrat Maheshwari*, Ritesh Kumar Tiwari, Lalit Singh
SRMS, CET Bareilly, Department of Pharmaceutics, Bareilly
*Corresponding Author

Published In:   Volume - 14,      Issue - 2,     Year - 2021


ABSTRACT:
Medicinal plants are being widely used, as a single or combination in wound healing process. Modern therapies present a large number of options, while traditional therapies are promising effective choices. Plant based extract are used in silver nanoparticle for achieving the therapeutic response of wound healing. Wound healing has been intensely studies in order to develop an “ideal” technique that achieves topical treatment, which prevent infection and promote a proper burn wound healing process. Green expertise technique is used to produce Silver nanoparticle for eco-friendly drug which can easily dispose in environment and do not affect the cost value. Research interest in the area of nanotechnology using nanoparticles produced the targeted therapeutic effect. Metal nanoparticles are being increasingly being used in dermatology preventing bacterial infections.


Cite this article:
Shubhrat Maheshwari, Ritesh Kumar Tiwari, Lalit Singh. Green Expertise: Synthesis of Silver Nanoparticles for Wound Healing Application an Overview. Research J. Pharm. and Tech. 2021; 14(2):1149-1154. doi: 10.5958/0974-360X.2021.00206.7

Cite(Electronic):
Shubhrat Maheshwari, Ritesh Kumar Tiwari, Lalit Singh. Green Expertise: Synthesis of Silver Nanoparticles for Wound Healing Application an Overview. Research J. Pharm. and Tech. 2021; 14(2):1149-1154. doi: 10.5958/0974-360X.2021.00206.7   Available on: https://rjptonline.org/AbstractView.aspx?PID=2021-14-2-102


REFERENCES:
1.    Klasen H.J, Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 2000, 26, 117-130.
2.    Silvesstry-Rodriguez N., Sicairos-Ruelas E.E., Gerba C.P., Bright K.R., Silver as disinfectant. Rev. Environ. Contam. T., 2007, 191, 23-45.
3.    Wang, X, et al., Fabrication and characterization of poly (L-lactideco-glycolide) knitted mesh reinforced collagen-chitosan hybrid scaffolds for dermal tissue engineering. J Mech Behav Biomed Mater., 2012, 8, 204-215.
4.    Balasubramani, M., Kumar, T.R. & Babu, M., Skin substitutes: a review. Burns. 2001, 27, 534-544.
5.    Zhao, S. et al., Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomatrials,2015, 53, 379-391.
6.    Gibrans NS, Wiechman S, Meyer W, Edelman L, Fauerbach J, Gibbons L, et al., American Burn Association consensus statements. J Burn Care Res., 2013, 34, 361-365.
7.    American Burn Association. Burn incidence and treatment in the United States: 2013 fact sheet. 2013. http://www.ameriburn.org/resources factsheet.php. Accessed 12 May 2015.
8.    American Burn Association. National Burn Repository 2014. https://www.ameriburn.org/2014NBRAnnualReport.pdf. Accessed 12 May 2015.
9.    Kagan RJ, Peck MD, Ahrenholz DH, Hickerson WL, Holmes J, Korentager R, et al., Surgical management of the burn wound and use of skin substitutes: an expert panel white paper. J Burn Care Res., 2013, 34, e60-79.
10.    Nisanci M, Eski M, Sahin I, Ilgan S, Isik S. Saving the zone of stasis in burns with activated protein C: an experimental study in rats. Burns 2010;36:397-402
11.    Boating J.S., Matthews K.H., Stevens H.N.E., Eccleston G.M., Wound healing dressing and drug delivery systems: a review. J Pharm Sci.,  2007, 97, 2892-2923.
12.    Martin P., Wound healing-aiming for perfect skin regeneration. Science, 1997, 276, 75-85.
13.    Langer R., Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res.,  2000, 33, 94-101.
14.    Bhadra D, Bhadra S, Jain P, Jain N.K., Pegnology: a review of PEG-ylated systems.  Pharmazie, 2002, 57, 5-29.
15.    Kommareddy S, Tiwari SB, Amiji MM., Long-circulating polymers nanovectors for tumor-selective gene delivery. Technol. Cancer Res Treat, 2005, 4, 615-25.
16.    Lee M, Kim SW., Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res., 2005, 22, 1-10.
17.    Husen A, Siddiqi KS., Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett. 2014, 9, 229.
18.    Siddiqi and Husen, Engineered gold nanoparticle and plant adaptation potential. Nano Res Lett. 2016, 11, 400.
19.    Siddiqi KS, Husen A., Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elements Med Biol., 2017, 40, 40-23.
20.    Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ., Design of biodegradable particles for protein delivery. J Control Release, 2002, 78, 15-24.
21.    Kreuter J. Nanoparticles. In Colloidal drug delivery systems. J, K., Ed. Marcel Dekker. New York, 1994, pp 219-342.
22.    Wei, L., Lu, J., Xu, H., Patel A., Chen, ZS. , Chen, G., Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015, 20, 595-601.
23.    Lara HH, Garza-Trevino EN, Ixtepan Turrent L, Singh DK., Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol. 2011, 9:30.
24.    Siddiqi KS, Husen A., Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nano Res Lett., 2016, 11, 363.
25.    Zaheer Z, Rafiuddin, Silver nanoparticles to self-assembled films: Green synthesis and charachterization. Colloids Surf B Biointerfaces., 2012, 90, 48-52.
26.    Syafiuddin, A.; Salmiati; Salim, M.R.; Kueh, A.B.H.; Hadiabharata, T., Nur, H., A Review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future Challenges. J. Clin. Chem. Soc., 2017, 64, 732-756.
27.    Kumar, A., Vemula, P.K., Ajayan, O.M., John, G., Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 2008, 7, 236-241.
28.    Desireddy, A, Conn, B.E.; Guo, J.; Yoon, B.; Barnett, R.N.; Monahan, B.M.; Kirschbaum, K.; Griffith, W.P.; Whetten, R.L.; Landman, U.; et al. Ultrastable silver nanoparticle. Nature 2013, 501, 399-402.
29.    Sun, Y., Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.
30.    Chen, D., Qiao, X., Chen, J., Synthesis and electrical properties of uniform silver nanoparticles for electronic application. J. Mater. Sci., 2009, 44, 1076-1081.
31.    Sun, Y., Mayers, B., Herricks, T.; Xia, Y. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and supporting evidence. Nano Lett., 2003, 3, 955-960.
32.    Haes, A.J., Duyne, R.P.V., A Nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface Plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc, 2002, 124, 10596-10604.
33.    Dankovich, T.A., Gray, D.G., Bactericidal paper impregnated with silver nanoparticle for point of use water treatment Environ. Sci. Technol., 2011, 45, 1992-1998.
34.    Wang, L., Zhang, T., Li, P., Huang, W., Tang, j., Wang, P., Liu, J., Yuan, Q., Bai, R., Li, B.,et al., Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver nanoparticle cytotoxicity. ACS Nano., 2015,9,6532-6547.
35.    Heiligtag, F.J., Niederberger, M., The fascinating world of nanoparticle research. Mater. Today., 2013, 16, 262-271.
36.    Deepak V, Kalishwaralal K, Pandian SRK, Gurunath S., An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. Metal Nanoparticles in Microbiology, 2011, 17-35.
37.    Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, et al., Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces, 2009, 74, 328-335.
38.    Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangilliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lette., 2008, 62, 4411-4413.
39.    Wei, L., Lu, J.; Xu, H.; Patel, A.; Chen, Z-S., Chen, G., Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug. Discov. Today. 2015,20,595-601.
40.    Burdusel, A-C,; Gherasim, O.; Grumezescu, A.M.; Mogoanta, L.; Ficai, A.; Andronescu, E. Biomedical application of silver nanoparticles: An up-to-date overview. Nanomaterials 2018,8, 681.
41.    Chung, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of gold silver nanoparticles in cancer nano-medicine. Artif. Cell. Nanomed. Biotechnol. 2018, 46, 1210-1220.
42.    Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3805-3821.
43.    Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385-406.
44.    Kinnear, C.; Moore, T.L.; Rodriguez-Lorenzo, L,; Rothen-Rutishauser, B.; Petri-Fink, A. Form follows function: Nanoparticles shape and its implications for nanomedicine. Chem. Rev. 2017, 117, 117, 11476-11521.
45.    Kumar, A.; Vemula, P.K.; Ajayan, P.M.; John, G. Silver-nanoparticle-embedded antimicrobial paints based on vegetables oil. Nat. Mater. 2008, 7, 236-241.
46.    Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram positive and gram negative bacteria. Nanomedicine 2010, 6, 103-109.
47.    Ahmed, S.; Ikram, S. Silver nanoparticle: One pot green synthesis using Terminalia arjuna extract for biological application. J. Nanosci. Nanotechnol. 2015, 6, 1000309.
48.    Patra, S.; Mukherjee, S.; KumarBarui, A.; Ganguly A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticle and their potential application for cancer therapeutics. Mater. Sci. Eng. C 2015, 53, 298-309.
49.    El-Nour, K.M.M.A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3,135-140.
50.    Sonnichsen, C.; Reinhard, B.M.; Liphardt, J.; Alivistatos, A.P. A molecular ruler based on Plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741.
51.    Wang, L., Zhang, T.; Li, P.; Huang, P.; Liu, J.; Yuan, Q.; Bai, R.; R.; Li.; B.; et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano. 2015, 9, 6532-6547.
52.    Gu, J.; Zhang, Y-W.; Tao, F. Shape control of bimetallic nano-crycatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050-8065.
53.    Klasen H.J., Historical review of the use of silver in the treatment of burns: early uses. Burns, 2000, 26, 117-130.
54.    Lansdown A.B., Silver. 1. Its antibacterial properties and mechanism of action. J Wound Care, 2002, 11, 125-130.
55.    Bhattacharya R., Patra C.R., Verma R., Kumar S., Greipp P.R., Mukherjee P., Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv Mater. 2007,19,711-716.
56.    Silver S. Bacterial silver resistance: molecular biology and uses and misuse of silver compounds. FEMS Microbiol Rev. 2003, 27, 341-353.
57.    Shrivastva S. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007, 18, 225103-225112.
58.    Boucher W., Stern J.M., Kotsinyan V. Intravesicalnanocrystalline silver decreases experimental bladder inflammation. J Urol. 2008, 176, 1598-1602.
59.    Thirumurugan G., Veni V.S., Ramachandran S., Rao, J.V., Dhanaraju M.D. Superior wound healing effect of topically delivered silver nanoparticle formulation using eco-friendly potato plant pathogenic fungus: synthesis and characterization. J Biomed Nanotechnol. 2011, 7, 656-666.
60.    Castillo P.M., Herrera J.L., Fernandez Montesinos R. Tiopronin monolayer- protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands. Nanomedicine. 2008, 3, 627-635.
61.    Ibn Sina H. Al-Qanon fi Tibb. Lebanon: AlamLe-AL-Matbooat institute; 2005.
62.    Pereira RF, Carvalho A, Gil MH, Mendes A, Bartolo PJ. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films. Carbohydrate Polymers. 2013, 98, 311-320. DOI: 10.1016/j.carbpol.2013.05.076
63.    Atiba A, Ueno H, Uzuka Y. The effect of Aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. The Journal of Veterinary Medical Science. 2011, 73, 583-589. DOI: 10.1292/jvms.10-0438.
64.    Tummalapalli M, Berthet M, Verrier B, Deopura BL, Alam MS, Gupta B. Composite wound dressings of pectin and gelatin with Aloe vera and curcumin as bioactive agents International Journal of Biological Macromolecules. 2016, 82, 104-113. DOI: 10.1016/J. ijbiomac.2015.10.087
65.    Shah A, Amini-Nik S. The role of phytochemicals in the inflammatory phase of wound healing, International Journal of Molecular Sciences. 2017, 18, Pii: E1068. DOI: 10.3390/ijms18051068
66.    EI-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Scientific Reports., 2017, 7, 9692.DOI: 10.1038/s41598-017-08771-8
67.    Nasiri E, Hosseinimehr SJ, Azadbakht M, Akbari J, Enayati-Fard R, Azizi S. The effect of Terminalischebula extract vs. silver sulfadiazine on burn wounds in rats Journal of Complementary & Integrative Medicine. 2015, 12,127-135.DOI:10.1515/jcim-2014-0068
68.    Matheson JD, Clayton J, Muller MJ. The reduction of itch during burn wound healing. The Journal of Burn Care & Rehabilitation., 2001, 22, 76-81.
69.    Li XQ, Kang R, Huo JC, Xie YH, WangSW, Cao W. Wound-healing activity of Zanthoxylumbungeanum maxim seed oil on experimentally burned rats. Pharmacognosy Magazine., 2017, 13, 363-371.DOI: 10.4103/pm. Pm-211-16.
70.    Upadhyay NK, Kumar R, Mandotra SK, Meena RN, Siddiqui MS, Sawhney RC, Gupta A. Safety and healing efficacy of sea buckthorn (Hippophaerhamnoides L.) seed oil on burn wounds in rats. Food and Chemical Toxicology. 2009, 47, 1146-1153. DOI: 10.1016/j. fct.2009.02.002
71.    Aderounmu AO, Omonisi AE, Akingbasote JA, Makanjuola M, Bejide RA, Orafidiya LO, Adelusola KA. Wound-healing and potential anti-keloidal properties of the latex of Calotropisprocera (Aiton) Asclepiadaceae in rabbits. African Journal of Traditional, Complementary, and Alternative Medicines. 2013, 10, 574-579.
72.    Mo J, Panichayupakaranant P, Kaewnpparat N, Nitiruangjaras A, Reanmongkol W. Wound healing activities of standardized pomegranate rind extract and its major anti-oxidants ellagic acid in rat dermal wounds. Journal of Natural Medicines. 2014, 68(2), 377-386.
73.    Somboon Wong J, Kankaisre M, Tanstisira MH. Wound healing activities of different extracts of Centellaasiatica in incision and burn wound models: An experimental animal study. BMC Complementary and Alternative Medicine. 2012, 12, 103. DOI:10.1186/1472-6882-12-103
74.    Sirinthipaporn A, Jiraungkooorskul W. Wound healing property review of Siam weed, Chromolaenaodorata. Pharmacognosy Reviews. 2017, 11, 35-38. DOI: 10.4103/Phrev. Phrev-53-16
75.    Wei wang, Kong-jun Lu, Chao-heng Yu, Oiao-ling Huang and Young-Zhong DU; Nano drug delivery system in wound treatment and skin regeneration,J. Nano-biotechnology, 2019, 17, 82 http://doi.org/10.1186/s12951-019-0514-y
76.    Jeevandandam J., Ahmed Barhoum, Yen S. Chan, Alain Dufresne and Michael K. Danquah;Nanoparticle and nanostructured material : history, sources, toxicity and regulations,Beilstein journal of Nanotechnology, 2018, 9, 1050-1074. Doi:10.3762/bjnano.9.98
77.    BalashanmugamPannerselvam, Mukesh Kumar DharmalingamJothinath, MuruganRajenderan, Palani Perumal, Kalaichelvan Pudupalaya Thangavelu, Hyung Joo Kim, Vijay Singh, Senthil KumaranRangarajulu. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phyto-synthesized silver nanoparticles in male Wistar albino rats,European journal of Pharmaceutical Sciences, http://dx.doi.org/10. 1016/j.ejps.2017.01.015
78.    Shakeel Ahmed, Saifullah, Mudasir Ahmad, Babu Lal Swami, SaiqaIkram. Green synthesis of silver nanoparticles using Azadirachtaindica aqueous leaf extract,Peer review under responsibility of The Egyptian Society of Radiation Sciences and Applications. http://dx.doi.org/10.1016/j.jrras.2015.06.006
79.    P. Heer and S. Shanmugam; Nanoparticle characterization and Application: An overview,International Journal of Current Microbiology and Applied Sciences, 2015, pp.379-386
80.    Marta Krychowiak, Mariusz Grinholc, RafalBanasiuk, MiroslawaKrauze-Baranowska, Daniel Glod, Anna Kawiak, Aleksandra Krolicka., Combination of silver Nanoparticles and Droserabinata Extract as a possible Alternative for Anbiotic Treatment Of Burn Wound Infection Caused by Resistance Staphylococcus aureus, PLoS ONE 9(12), e11527. https://doi:10.1371/journal.phone.0115727
81.    Chiara Rigo, LitiziaFerroni, IIariaTocco, Marco Roman, Ivan Munivrana, Chiara Gardin, Warren R.L. Cairns, Vincenzo, Bruno Azzena Carlo Barbara Zavan, Active Silver Nanoparticles for Wound Healing, International journal of Molecular Sciences, 2013, Mar, 14(3), 4817-4840. http://doi:10.33390/ijms14034817
82.    ThirumuruanGunasekkaran,TadeleNigusse,MagharalaDasarathaDhanaraju,Silver Nanoparticles as Real Bullets for Wound Healing, American college of clinical wound specialist, http://.doi.org./10.1016/j.jcws.2012.05.001
83.    Amit S. Borade, BAbasahe b N. Kale and Rajkumar V. Shete, Efficacy of Ampucare: A Novel Herbal Formulation for Burn Wound Healing Versus Other Burn Medicines, International journal of pharmacy and lifesciences, Vol. 2, Issue 1: Jan: 2011, 536-541.
84.    A. Soni, V.K Diwadi, M, Chaudhary , M. Shrivastva and V. Naithanani., Efficacy of Ampucare: A Novel Herbal Formulation for Burn Wound Healing Versus Other Burn Medicines.  Asian journal of Biological Sciences, 2010, 3 (1), 18-27.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available